利用深度学习实现挠性波的任意目标频率隐形

Zhiang Linghu, Qiujiao Du, Yawen Shen, Hongwu Yang, Pai Peng, Fengming Liu
{"title":"利用深度学习实现挠性波的任意目标频率隐形","authors":"Zhiang Linghu, Qiujiao Du, Yawen Shen, Hongwu Yang, Pai Peng, Fengming Liu","doi":"10.1209/0295-5075/ad3a0f","DOIUrl":null,"url":null,"abstract":"\n Differing from electromagnetic and acoustic waves, the governing equation for elastic waves in flexural plates is not form invariant, hindering straightforward cloak design based on coordinate transformation theory. In this work, we propose a novel idea instead of approximately equivalent transformation method, and employ scattering cancellation techniques to design a multi-layer cylindrical structure for achieving flexural wave cloaking at desired target frequencies. Moreover, we use deep learning to effectively address the time consuming issue dealing with fine-tuning design parameters for the desired response. More importantly, we adopt a method based on a tandem neural network to tackle the one-to-many mapping challenge in inverse design. It not only accurately predicts the scattering spectra of multi-layer structures in advance but also efficiently performs inverse design to obtain the required design parameters for arbitrary target frequency cloaking.","PeriodicalId":503117,"journal":{"name":"Europhysics Letters","volume":"117 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arbitrary target frequency cloaking for flexural waves using deep learning\",\"authors\":\"Zhiang Linghu, Qiujiao Du, Yawen Shen, Hongwu Yang, Pai Peng, Fengming Liu\",\"doi\":\"10.1209/0295-5075/ad3a0f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Differing from electromagnetic and acoustic waves, the governing equation for elastic waves in flexural plates is not form invariant, hindering straightforward cloak design based on coordinate transformation theory. In this work, we propose a novel idea instead of approximately equivalent transformation method, and employ scattering cancellation techniques to design a multi-layer cylindrical structure for achieving flexural wave cloaking at desired target frequencies. Moreover, we use deep learning to effectively address the time consuming issue dealing with fine-tuning design parameters for the desired response. More importantly, we adopt a method based on a tandem neural network to tackle the one-to-many mapping challenge in inverse design. It not only accurately predicts the scattering spectra of multi-layer structures in advance but also efficiently performs inverse design to obtain the required design parameters for arbitrary target frequency cloaking.\",\"PeriodicalId\":503117,\"journal\":{\"name\":\"Europhysics Letters\",\"volume\":\"117 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Europhysics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/ad3a0f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europhysics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad3a0f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与电磁波和声波不同,挠性板中弹性波的支配方程并不是形式不变的,这阻碍了基于坐标变换理论的直接隐形设计。在这项工作中,我们提出了一种替代近似等效变换方法的新思路,并采用散射消除技术设计了一种多层圆柱形结构,以实现在所需目标频率下的挠性波隐形。此外,我们还利用深度学习有效解决了为获得理想响应而微调设计参数这一耗时问题。更重要的是,我们采用了一种基于串联神经网络的方法来解决逆向设计中一对多的映射难题。它不仅能提前准确预测多层结构的散射谱,还能高效地进行反设计,以获得任意目标频率隐形所需的设计参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arbitrary target frequency cloaking for flexural waves using deep learning
Differing from electromagnetic and acoustic waves, the governing equation for elastic waves in flexural plates is not form invariant, hindering straightforward cloak design based on coordinate transformation theory. In this work, we propose a novel idea instead of approximately equivalent transformation method, and employ scattering cancellation techniques to design a multi-layer cylindrical structure for achieving flexural wave cloaking at desired target frequencies. Moreover, we use deep learning to effectively address the time consuming issue dealing with fine-tuning design parameters for the desired response. More importantly, we adopt a method based on a tandem neural network to tackle the one-to-many mapping challenge in inverse design. It not only accurately predicts the scattering spectra of multi-layer structures in advance but also efficiently performs inverse design to obtain the required design parameters for arbitrary target frequency cloaking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large self-heating by trapped-flux reduction in Sn-Pb solders Imperfect diffusion-controlled reactions for stochastic processes with memory Schrödinger evolution of a scalar field in Riemannian and pseudo Riemannian expanding metrics Evolution of the crack patterns in nanostructured films with subsequent wetting and drying cycles Narrowband stimulated Raman scattering and molecular modulation in anti-resonant hollow-core fibres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1