利用机器学习,基于 NPP/VIIRS 夜光和社会经济统计数据的郑州市 GDP 空间化研究

Inam Ullah, Weidong Li, Fanqian Meng, Muhammad Imran Nadeem, Kanwal Ahmed
{"title":"利用机器学习,基于 NPP/VIIRS 夜光和社会经济统计数据的郑州市 GDP 空间化研究","authors":"Inam Ullah, Weidong Li, Fanqian Meng, Muhammad Imran Nadeem, Kanwal Ahmed","doi":"10.14358/pers.23-00010r2","DOIUrl":null,"url":null,"abstract":"This article introduces a comprehensive methodology for mapping and assessing the urban built-up areas and establishing a spatial gross domestic product (GDP) model for Zhengzhou using night-time light (NTL) data, alongside socioeconomic statistical data from 2012 to 2017. Two supervised\n sorting algorithms, namely the support vector machine (SVM) algorithm and the deep learning (DL) algorithm, which includes the U-Net and fully convolutional neural (FCN) network models, are proposed for urban built-up area identification and image classification. Comparisons with Municipal\n Bureau of Statistics data highlight the U-Net neural network model exhibits superior accuracy, especially in areas with diverse characteristics. For each year from 2012 to 2017, a spatial GDP model was developed based on Zhengzhou's urban GDP and U-Net sorted images. This research provides\n valuable insights into urban development and economic assessment for the city.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"22 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GDP Spatialization in City of Zhengzhou Based on NPP/VIIRS Night-time Light and Socioeconomic Statistical Data Using Machine Learning\",\"authors\":\"Inam Ullah, Weidong Li, Fanqian Meng, Muhammad Imran Nadeem, Kanwal Ahmed\",\"doi\":\"10.14358/pers.23-00010r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces a comprehensive methodology for mapping and assessing the urban built-up areas and establishing a spatial gross domestic product (GDP) model for Zhengzhou using night-time light (NTL) data, alongside socioeconomic statistical data from 2012 to 2017. Two supervised\\n sorting algorithms, namely the support vector machine (SVM) algorithm and the deep learning (DL) algorithm, which includes the U-Net and fully convolutional neural (FCN) network models, are proposed for urban built-up area identification and image classification. Comparisons with Municipal\\n Bureau of Statistics data highlight the U-Net neural network model exhibits superior accuracy, especially in areas with diverse characteristics. For each year from 2012 to 2017, a spatial GDP model was developed based on Zhengzhou's urban GDP and U-Net sorted images. This research provides\\n valuable insights into urban development and economic assessment for the city.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\"22 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.23-00010r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.23-00010r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种利用夜间照明(NTL)数据以及 2012 年至 2017 年的社会经济统计数据绘制和评估城市建成区并建立郑州空间国内生产总值(GDP)模型的综合方法。提出了两种监督分类算法,即支持向量机(SVM)算法和深度学习(DL)算法,其中包括 U-Net 和全卷积神经(FCN)网络模型,用于城市建成区识别和图像分类。通过与市统计局数据的比较,U-Net 神经网络模型显示出更高的准确性,尤其是在具有不同特征的区域。基于郑州城市 GDP 和 U-Net 分类图像,建立了 2012 年至 2017 年每年的空间 GDP 模型。这项研究为该市的城市发展和经济评估提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GDP Spatialization in City of Zhengzhou Based on NPP/VIIRS Night-time Light and Socioeconomic Statistical Data Using Machine Learning
This article introduces a comprehensive methodology for mapping and assessing the urban built-up areas and establishing a spatial gross domestic product (GDP) model for Zhengzhou using night-time light (NTL) data, alongside socioeconomic statistical data from 2012 to 2017. Two supervised sorting algorithms, namely the support vector machine (SVM) algorithm and the deep learning (DL) algorithm, which includes the U-Net and fully convolutional neural (FCN) network models, are proposed for urban built-up area identification and image classification. Comparisons with Municipal Bureau of Statistics data highlight the U-Net neural network model exhibits superior accuracy, especially in areas with diverse characteristics. For each year from 2012 to 2017, a spatial GDP model was developed based on Zhengzhou's urban GDP and U-Net sorted images. This research provides valuable insights into urban development and economic assessment for the city.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ReLAP-Net: Residual Learning and Attention Based Parallel Network for Hyperspectral and Multispectral Image Fusion Book Review ‐ Top 20 Essential Skills for ArcGIS Pro A Surface Water Extraction Method Integrating Spectral and Temporal Characteristics Assessing the Utility of Uncrewed Aerial System Photogrammetrically Derived Point Clouds for Land Cover Classification in the Alaska North Slope GIS Tips & Tricks ‐ USGS Adds 100K Topo Scale to OnDemand Map Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1