DuMato:面向 GPU 的高效经中心子图枚举系统

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Journal of Parallel and Distributed Computing Pub Date : 2024-04-22 DOI:10.1016/j.jpdc.2024.104903
Samuel Ferraz , Vinicius Dias , Carlos H.C. Teixeira , Srinivasan Parthasarathy , George Teodoro , Wagner Meira Jr.
{"title":"DuMato:面向 GPU 的高效经中心子图枚举系统","authors":"Samuel Ferraz ,&nbsp;Vinicius Dias ,&nbsp;Carlos H.C. Teixeira ,&nbsp;Srinivasan Parthasarathy ,&nbsp;George Teodoro ,&nbsp;Wagner Meira Jr.","doi":"10.1016/j.jpdc.2024.104903","DOIUrl":null,"url":null,"abstract":"<div><p>Subgraph enumeration is a heavy-computing procedure that lies at the core of Graph Pattern Mining (GPM) algorithms, whose goal is to extract subgraphs from larger graphs according to a given property. Scaling GPM algorithms for GPUs is challenging due to irregularity, high memory demand, and non-trivial choice of enumeration paradigms. In this work we propose a depth-first-search subgraph exploration strategy (DFS-wide) to improve the memory locality and access patterns across different enumeration paradigms. We design a warp-centric workflow to the problem that reduces divergences and ensures that accesses to graph data are coalesced. A weight-based dynamic workload redistribution is also proposed to mitigate load imbalance. We put together these strategies in a system called DuMato, allowing efficient implementations of several GPM algorithms via a common set of GPU primitives. Our experiments show that DuMato's optimizations are effective and that it enables exploring larger subgraphs when compared to state-of-the-art systems.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"191 ","pages":"Article 104903"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DuMato: An efficient warp-centric subgraph enumeration system for GPU\",\"authors\":\"Samuel Ferraz ,&nbsp;Vinicius Dias ,&nbsp;Carlos H.C. Teixeira ,&nbsp;Srinivasan Parthasarathy ,&nbsp;George Teodoro ,&nbsp;Wagner Meira Jr.\",\"doi\":\"10.1016/j.jpdc.2024.104903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Subgraph enumeration is a heavy-computing procedure that lies at the core of Graph Pattern Mining (GPM) algorithms, whose goal is to extract subgraphs from larger graphs according to a given property. Scaling GPM algorithms for GPUs is challenging due to irregularity, high memory demand, and non-trivial choice of enumeration paradigms. In this work we propose a depth-first-search subgraph exploration strategy (DFS-wide) to improve the memory locality and access patterns across different enumeration paradigms. We design a warp-centric workflow to the problem that reduces divergences and ensures that accesses to graph data are coalesced. A weight-based dynamic workload redistribution is also proposed to mitigate load imbalance. We put together these strategies in a system called DuMato, allowing efficient implementations of several GPM algorithms via a common set of GPU primitives. Our experiments show that DuMato's optimizations are effective and that it enables exploring larger subgraphs when compared to state-of-the-art systems.</p></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"191 \",\"pages\":\"Article 104903\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731524000674\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000674","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

子图枚举是图形模式挖掘(GPM)算法的核心,其目标是从更大的图形中根据给定属性提取子图。由于不规则性、高内存需求和枚举范式的非三维选择,为 GPU 扩展 GPM 算法具有挑战性。在这项工作中,我们提出了一种深度优先搜索子图探索策略(DFS-wide),以改善不同枚举范式的内存局部性和访问模式。我们设计了一个以翘曲为中心的工作流程,以减少分歧并确保对图数据的访问是聚合的。此外,我们还提出了一种基于权重的动态工作量再分配方法,以缓解负载不平衡问题。我们将这些策略整合到一个名为 DuMato 的系统中,允许通过一套通用的 GPU 基元高效地实现几种 GPM 算法。我们的实验表明,DuMato 的优化非常有效,与最先进的系统相比,它可以探索更大的子图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DuMato: An efficient warp-centric subgraph enumeration system for GPU

Subgraph enumeration is a heavy-computing procedure that lies at the core of Graph Pattern Mining (GPM) algorithms, whose goal is to extract subgraphs from larger graphs according to a given property. Scaling GPM algorithms for GPUs is challenging due to irregularity, high memory demand, and non-trivial choice of enumeration paradigms. In this work we propose a depth-first-search subgraph exploration strategy (DFS-wide) to improve the memory locality and access patterns across different enumeration paradigms. We design a warp-centric workflow to the problem that reduces divergences and ensures that accesses to graph data are coalesced. A weight-based dynamic workload redistribution is also proposed to mitigate load imbalance. We put together these strategies in a system called DuMato, allowing efficient implementations of several GPM algorithms via a common set of GPU primitives. Our experiments show that DuMato's optimizations are effective and that it enables exploring larger subgraphs when compared to state-of-the-art systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
期刊最新文献
Enabling semi-supervised learning in intrusion detection systems Fault-tolerance in biswapped multiprocessor interconnection networks Editorial Board Front Matter 1 - Full Title Page (regular issues)/Special Issue Title page (special issues) Design and experimental evaluation of algorithms for optimizing the throughput of dispersed computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1