沸石中铂纳米颗粒与阳离子相互转化的热力学和动力学

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Catalysis Pub Date : 2024-04-21 DOI:10.1016/j.jcat.2024.115507
Anupama Jayaraman , Asanka Wijerathne , Keka Mandal , Rajamani Gounder , Christopher Paolucci
{"title":"沸石中铂纳米颗粒与阳离子相互转化的热力学和动力学","authors":"Anupama Jayaraman ,&nbsp;Asanka Wijerathne ,&nbsp;Keka Mandal ,&nbsp;Rajamani Gounder ,&nbsp;Christopher Paolucci","doi":"10.1016/j.jcat.2024.115507","DOIUrl":null,"url":null,"abstract":"<div><p>In metal-containing zeolites, sintering and redispersion processes exercise control over the identity of metal site structures, but the thermodynamic and kinetic factors that influence these molecular-level processes are not completely understood. Here, we assess the ability of first principles informed free energy models (for supported and unsupported nanoparticles) and kinetic models integrating Ostwald ripening with atom trapping to describe the interconversion between Pt cations and nanoparticles encapsulated in chabazite (CHA) zeolites. Density functional theory-derived thermodynamic phase diagrams show that the interconversion between cations, favored in oxidizing environments, and particles, favored in reducing environments, is fully reversible within a wide range of their respective conditions (temperatures and pressures) for CHA and several other zeolite topologies. Kinetic Monte Carlo simulations of Pt redispersion are consistent with experimentally observed redispersion kinetics of encapsulated Pt nanoparticles in CHA zeolites, and model results suggest the zeolite host imparts additional stability for Pt nanoparticles. We envision our thermodynamic and kinetic models for Pt-CHA are also capable of describing nanoparticle and cation interconversions for other zeolite frameworks under similar conditions.</p></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamics and kinetics of interconversion between platinum nanoparticles and cations in zeolites\",\"authors\":\"Anupama Jayaraman ,&nbsp;Asanka Wijerathne ,&nbsp;Keka Mandal ,&nbsp;Rajamani Gounder ,&nbsp;Christopher Paolucci\",\"doi\":\"10.1016/j.jcat.2024.115507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In metal-containing zeolites, sintering and redispersion processes exercise control over the identity of metal site structures, but the thermodynamic and kinetic factors that influence these molecular-level processes are not completely understood. Here, we assess the ability of first principles informed free energy models (for supported and unsupported nanoparticles) and kinetic models integrating Ostwald ripening with atom trapping to describe the interconversion between Pt cations and nanoparticles encapsulated in chabazite (CHA) zeolites. Density functional theory-derived thermodynamic phase diagrams show that the interconversion between cations, favored in oxidizing environments, and particles, favored in reducing environments, is fully reversible within a wide range of their respective conditions (temperatures and pressures) for CHA and several other zeolite topologies. Kinetic Monte Carlo simulations of Pt redispersion are consistent with experimentally observed redispersion kinetics of encapsulated Pt nanoparticles in CHA zeolites, and model results suggest the zeolite host imparts additional stability for Pt nanoparticles. We envision our thermodynamic and kinetic models for Pt-CHA are also capable of describing nanoparticle and cation interconversions for other zeolite frameworks under similar conditions.</p></div>\",\"PeriodicalId\":346,\"journal\":{\"name\":\"Journal of Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021951724002203\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724002203","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在含金属沸石中,烧结和再分散过程对金属位点结构的特性起着控制作用,但影响这些分子级过程的热力学和动力学因素并不完全清楚。在此,我们评估了第一原理自由能模型(适用于有支撑和无支撑的纳米颗粒)和动力学模型(将奥斯特瓦尔德熟化与原子捕获整合在一起)描述铂阳离子与包裹在夏巴沸石(CHA)中的纳米颗粒之间相互转化的能力。密度泛函理论推导出的热力学相图显示,对于 CHA 和其他几种沸石拓扑结构而言,阳离子(在氧化环境中更有利)和颗粒(在还原环境中更有利)之间的相互转化在各自条件(温度和压力)的大范围内是完全可逆的。铂再分散的蒙特卡洛动力学模拟与实验观察到的 CHA 沸石中封装铂纳米粒子的再分散动力学相一致,模型结果表明沸石宿主为铂纳米粒子提供了额外的稳定性。我们设想我们的 Pt-CHA 热力学和动力学模型也能描述其他沸石框架在类似条件下的纳米粒子和阳离子相互转化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermodynamics and kinetics of interconversion between platinum nanoparticles and cations in zeolites

In metal-containing zeolites, sintering and redispersion processes exercise control over the identity of metal site structures, but the thermodynamic and kinetic factors that influence these molecular-level processes are not completely understood. Here, we assess the ability of first principles informed free energy models (for supported and unsupported nanoparticles) and kinetic models integrating Ostwald ripening with atom trapping to describe the interconversion between Pt cations and nanoparticles encapsulated in chabazite (CHA) zeolites. Density functional theory-derived thermodynamic phase diagrams show that the interconversion between cations, favored in oxidizing environments, and particles, favored in reducing environments, is fully reversible within a wide range of their respective conditions (temperatures and pressures) for CHA and several other zeolite topologies. Kinetic Monte Carlo simulations of Pt redispersion are consistent with experimentally observed redispersion kinetics of encapsulated Pt nanoparticles in CHA zeolites, and model results suggest the zeolite host imparts additional stability for Pt nanoparticles. We envision our thermodynamic and kinetic models for Pt-CHA are also capable of describing nanoparticle and cation interconversions for other zeolite frameworks under similar conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
期刊最新文献
Study on the micro-mechanism for the thermal stability of α-diimine nickel catalysts and active centers Confining polyoxometalates in porphyrin-based porous cationic polymer toward boosting visible-light-driven synthesis of sulfoxides and detoxification of mustard gas simulants Defect tailoring in K-doped carbon nitride: Enabling efficient decoupling of light and dark reactions for timely and delayed on-demand solar hydrogen production A novel and facile ultraviolet-induced photo-reduction for preparing oxidase-like AuNCs@H2N-ZIF-8 composites in alcohol-water solutions Construct novel day-night dual reaction centers WO3-FePc photocatalyst for multipollutant degradation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1