{"title":"基于效用函数的分布式拥塞控制","authors":"Edison Segarra Guzmán, Patricia Ludeña-González","doi":"10.29019/enfoqueute.994","DOIUrl":null,"url":null,"abstract":"This paper introduces the Distributed Utility Function Algorithm (D-AFU) as a notable progression in managing and optimizing network traffic within distributed settings. Based on the utility function principle, D-AFU dynamically adjusts data rate in response to ever-changing network demands, with optimal performance and a higher user experience. Contrary to the centralized model, D-AFU employs a distributed, scalable, and resilient against failures and system overloads mechanism. Its efficiency is validated using the NS-3 simulator. Three main metrics were used: the data rate allocation, utility per session, and fairness (quantified by the Gini coefficient). D-AFU displays exceptional performance and low latency, particularly vital for real-time applications with high Quality of Service (QoS) requirements.","PeriodicalId":43285,"journal":{"name":"Enfoque UTE","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Congestion Control Based on Utility Function\",\"authors\":\"Edison Segarra Guzmán, Patricia Ludeña-González\",\"doi\":\"10.29019/enfoqueute.994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces the Distributed Utility Function Algorithm (D-AFU) as a notable progression in managing and optimizing network traffic within distributed settings. Based on the utility function principle, D-AFU dynamically adjusts data rate in response to ever-changing network demands, with optimal performance and a higher user experience. Contrary to the centralized model, D-AFU employs a distributed, scalable, and resilient against failures and system overloads mechanism. Its efficiency is validated using the NS-3 simulator. Three main metrics were used: the data rate allocation, utility per session, and fairness (quantified by the Gini coefficient). D-AFU displays exceptional performance and low latency, particularly vital for real-time applications with high Quality of Service (QoS) requirements.\",\"PeriodicalId\":43285,\"journal\":{\"name\":\"Enfoque UTE\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Enfoque UTE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29019/enfoqueute.994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enfoque UTE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29019/enfoqueute.994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Distributed Congestion Control Based on Utility Function
This paper introduces the Distributed Utility Function Algorithm (D-AFU) as a notable progression in managing and optimizing network traffic within distributed settings. Based on the utility function principle, D-AFU dynamically adjusts data rate in response to ever-changing network demands, with optimal performance and a higher user experience. Contrary to the centralized model, D-AFU employs a distributed, scalable, and resilient against failures and system overloads mechanism. Its efficiency is validated using the NS-3 simulator. Three main metrics were used: the data rate allocation, utility per session, and fairness (quantified by the Gini coefficient). D-AFU displays exceptional performance and low latency, particularly vital for real-time applications with high Quality of Service (QoS) requirements.