Mohamed O. Othman , Christopher Forsmark , Dhiraj Yadav , Vikesh K. Singh , Luis F. Lara , Walter Park , Zuoyi Zhang , Jun Yu , Jens J. Kort
{"title":"开发确定性慢性胰腺炎患者胰腺外分泌功能不全临床筛查工具","authors":"Mohamed O. Othman , Christopher Forsmark , Dhiraj Yadav , Vikesh K. Singh , Luis F. Lara , Walter Park , Zuoyi Zhang , Jun Yu , Jens J. Kort","doi":"10.1016/j.pan.2024.04.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background/Objectives</h3><p>No simple, accurate diagnostic tests exist for exocrine pancreatic insufficiency (EPI), and EPI remains underdiagnosed in chronic pancreatitis (CP). We sought to develop a digital screening tool to assist clinicians to predict EPI in patients with definite CP.</p></div><div><h3>Methods</h3><p>This was a retrospective case-control study of patients with definite CP with/without EPI. Overall, 49 candidate predictor variables were utilized to train a Classification and Regression Tree (CART) model to rank all predictors and select a parsimonious set of predictors for EPI status. Five-fold cross-validation was used to assess generalizability, and the full CART model was compared with 4 additional predictive models. EPI misclassification rate (mRate) served as primary endpoint metric.</p></div><div><h3>Results</h3><p>274 patients with definite CP from 6 pancreatitis centers across the United States were included, of which 58 % had EPI based on predetermined criteria. The optimal CART decision tree included 10 variables. The mRate without/with 5-fold cross-validation of the CART was 0.153 (training error) and 0.314 (prediction error), and the area under the receiver operating characteristic curve was 0.889 and 0.682, respectively. Sensitivity and specificity without/with 5-fold cross-validation was 0.888/0.789 and 0.794/0.535, respectively. A trained second CART without pancreas imaging variables (n = 6), yielded 8 variables. Training error/prediction error was 0.190/0.351; sensitivity was 0.869/0.650, and specificity was 0.728/0.649, each without/with 5-fold cross-validation.</p></div><div><h3>Conclusion</h3><p>We developed two CART models that were integrated into one digital screening tool to assess for EPI in patients with definite CP and with two to six input variables needed for predicting EPI status.</p></div>","PeriodicalId":19976,"journal":{"name":"Pancreatology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1424390324001029/pdfft?md5=81381c9ea1d95b9033cbe9572387cf22&pid=1-s2.0-S1424390324001029-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of clinical screening tool for exocrine pancreatic insufficiency in patients with definite chronic pancreatitis\",\"authors\":\"Mohamed O. Othman , Christopher Forsmark , Dhiraj Yadav , Vikesh K. Singh , Luis F. Lara , Walter Park , Zuoyi Zhang , Jun Yu , Jens J. Kort\",\"doi\":\"10.1016/j.pan.2024.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background/Objectives</h3><p>No simple, accurate diagnostic tests exist for exocrine pancreatic insufficiency (EPI), and EPI remains underdiagnosed in chronic pancreatitis (CP). We sought to develop a digital screening tool to assist clinicians to predict EPI in patients with definite CP.</p></div><div><h3>Methods</h3><p>This was a retrospective case-control study of patients with definite CP with/without EPI. Overall, 49 candidate predictor variables were utilized to train a Classification and Regression Tree (CART) model to rank all predictors and select a parsimonious set of predictors for EPI status. Five-fold cross-validation was used to assess generalizability, and the full CART model was compared with 4 additional predictive models. EPI misclassification rate (mRate) served as primary endpoint metric.</p></div><div><h3>Results</h3><p>274 patients with definite CP from 6 pancreatitis centers across the United States were included, of which 58 % had EPI based on predetermined criteria. The optimal CART decision tree included 10 variables. The mRate without/with 5-fold cross-validation of the CART was 0.153 (training error) and 0.314 (prediction error), and the area under the receiver operating characteristic curve was 0.889 and 0.682, respectively. Sensitivity and specificity without/with 5-fold cross-validation was 0.888/0.789 and 0.794/0.535, respectively. A trained second CART without pancreas imaging variables (n = 6), yielded 8 variables. Training error/prediction error was 0.190/0.351; sensitivity was 0.869/0.650, and specificity was 0.728/0.649, each without/with 5-fold cross-validation.</p></div><div><h3>Conclusion</h3><p>We developed two CART models that were integrated into one digital screening tool to assess for EPI in patients with definite CP and with two to six input variables needed for predicting EPI status.</p></div>\",\"PeriodicalId\":19976,\"journal\":{\"name\":\"Pancreatology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1424390324001029/pdfft?md5=81381c9ea1d95b9033cbe9572387cf22&pid=1-s2.0-S1424390324001029-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pancreatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1424390324001029\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pancreatology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1424390324001029","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Development of clinical screening tool for exocrine pancreatic insufficiency in patients with definite chronic pancreatitis
Background/Objectives
No simple, accurate diagnostic tests exist for exocrine pancreatic insufficiency (EPI), and EPI remains underdiagnosed in chronic pancreatitis (CP). We sought to develop a digital screening tool to assist clinicians to predict EPI in patients with definite CP.
Methods
This was a retrospective case-control study of patients with definite CP with/without EPI. Overall, 49 candidate predictor variables were utilized to train a Classification and Regression Tree (CART) model to rank all predictors and select a parsimonious set of predictors for EPI status. Five-fold cross-validation was used to assess generalizability, and the full CART model was compared with 4 additional predictive models. EPI misclassification rate (mRate) served as primary endpoint metric.
Results
274 patients with definite CP from 6 pancreatitis centers across the United States were included, of which 58 % had EPI based on predetermined criteria. The optimal CART decision tree included 10 variables. The mRate without/with 5-fold cross-validation of the CART was 0.153 (training error) and 0.314 (prediction error), and the area under the receiver operating characteristic curve was 0.889 and 0.682, respectively. Sensitivity and specificity without/with 5-fold cross-validation was 0.888/0.789 and 0.794/0.535, respectively. A trained second CART without pancreas imaging variables (n = 6), yielded 8 variables. Training error/prediction error was 0.190/0.351; sensitivity was 0.869/0.650, and specificity was 0.728/0.649, each without/with 5-fold cross-validation.
Conclusion
We developed two CART models that were integrated into one digital screening tool to assess for EPI in patients with definite CP and with two to six input variables needed for predicting EPI status.
期刊介绍:
Pancreatology is the official journal of the International Association of Pancreatology (IAP), the European Pancreatic Club (EPC) and several national societies and study groups around the world. Dedicated to the understanding and treatment of exocrine as well as endocrine pancreatic disease, this multidisciplinary periodical publishes original basic, translational and clinical pancreatic research from a range of fields including gastroenterology, oncology, surgery, pharmacology, cellular and molecular biology as well as endocrinology, immunology and epidemiology. Readers can expect to gain new insights into pancreatic physiology and into the pathogenesis, diagnosis, therapeutic approaches and prognosis of pancreatic diseases. The journal features original articles, case reports, consensus guidelines and topical, cutting edge reviews, thus representing a source of valuable, novel information for clinical and basic researchers alike.