Weiwei Zheng, Haiyan Wu, Gang Xu, Ran Ling, Renshu Gu
{"title":"通过跨场引导布局混合实现保全特征的四边形网格布尔运算","authors":"Weiwei Zheng, Haiyan Wu, Gang Xu, Ran Ling, Renshu Gu","doi":"10.1016/j.cagd.2024.102324","DOIUrl":null,"url":null,"abstract":"<div><p>Compared to triangular meshes, high-quality quadrilateral meshes offer significant advantages in the field of simulation. However, generating high-quality quadrilateral meshes has always been a challenging task. By synthesizing high-quality quadrilateral meshes based on existing ones through Boolean operations such as mesh intersection, union, and difference, the automation level of quadrilateral mesh modeling can be improved. This significantly reduces modeling time. We propose a feature-preserving quadrilateral mesh Boolean operation method that can generate high-quality all-quadrilateral meshes through Boolean operations while preserving the geometric features and shape of the original mesh. Our method, guided by cross-field techniques, aligns mesh faces with geometric features of the model and maximally preserves the original mesh's geometric shape and layout. Compared to traditional quadrilateral mesh generation methods, our approach demonstrates higher efficiency, offering a substantial improvement to the pipeline of mesh-based modeling tools.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102324"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature-preserving quadrilateral mesh Boolean operation with cross-field guided layout blending\",\"authors\":\"Weiwei Zheng, Haiyan Wu, Gang Xu, Ran Ling, Renshu Gu\",\"doi\":\"10.1016/j.cagd.2024.102324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Compared to triangular meshes, high-quality quadrilateral meshes offer significant advantages in the field of simulation. However, generating high-quality quadrilateral meshes has always been a challenging task. By synthesizing high-quality quadrilateral meshes based on existing ones through Boolean operations such as mesh intersection, union, and difference, the automation level of quadrilateral mesh modeling can be improved. This significantly reduces modeling time. We propose a feature-preserving quadrilateral mesh Boolean operation method that can generate high-quality all-quadrilateral meshes through Boolean operations while preserving the geometric features and shape of the original mesh. Our method, guided by cross-field techniques, aligns mesh faces with geometric features of the model and maximally preserves the original mesh's geometric shape and layout. Compared to traditional quadrilateral mesh generation methods, our approach demonstrates higher efficiency, offering a substantial improvement to the pipeline of mesh-based modeling tools.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"111 \",\"pages\":\"Article 102324\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016783962400058X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016783962400058X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Feature-preserving quadrilateral mesh Boolean operation with cross-field guided layout blending
Compared to triangular meshes, high-quality quadrilateral meshes offer significant advantages in the field of simulation. However, generating high-quality quadrilateral meshes has always been a challenging task. By synthesizing high-quality quadrilateral meshes based on existing ones through Boolean operations such as mesh intersection, union, and difference, the automation level of quadrilateral mesh modeling can be improved. This significantly reduces modeling time. We propose a feature-preserving quadrilateral mesh Boolean operation method that can generate high-quality all-quadrilateral meshes through Boolean operations while preserving the geometric features and shape of the original mesh. Our method, guided by cross-field techniques, aligns mesh faces with geometric features of the model and maximally preserves the original mesh's geometric shape and layout. Compared to traditional quadrilateral mesh generation methods, our approach demonstrates higher efficiency, offering a substantial improvement to the pipeline of mesh-based modeling tools.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.