Pengfei Liu , Yuqing Zhang , He Wang , Milo K. Yip , Elvis S. Liu , Xiaogang Jin
{"title":"一般 SDF 之间的实时碰撞检测","authors":"Pengfei Liu , Yuqing Zhang , He Wang , Milo K. Yip , Elvis S. Liu , Xiaogang Jin","doi":"10.1016/j.cagd.2024.102305","DOIUrl":null,"url":null,"abstract":"<div><p>Signed Distance Fields (SDFs) have found widespread utility in collision detection applications due to their superior query efficiency and ability to represent continuous geometries. However, little attention has been paid to calculating the intersection of two arbitrary SDFs. In this paper, we propose a novel, accurate, and real-time approach for SDF-based collision detection between two solids, both represented as SDFs. Our primary strategy entails using interval calculations and the SDF gradient to guide the search for intersection points within the geometry. For arbitrary objects, we take inspiration from existing collision detection pipelines and segment the two SDFs into multiple parts with bounding volumes. Once potential collisions between two parts are identified, our method quickly computes comprehensive intersection information such as penetration depth, contact points, and contact normals. Our method is general in that it accepts both continuous and discrete SDF representations. Experiment results show that our method can detect collisions in high-precision models in real time, highlighting its potential for a wide range of applications in computer graphics and virtual reality.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102305"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time collision detection between general SDFs\",\"authors\":\"Pengfei Liu , Yuqing Zhang , He Wang , Milo K. Yip , Elvis S. Liu , Xiaogang Jin\",\"doi\":\"10.1016/j.cagd.2024.102305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Signed Distance Fields (SDFs) have found widespread utility in collision detection applications due to their superior query efficiency and ability to represent continuous geometries. However, little attention has been paid to calculating the intersection of two arbitrary SDFs. In this paper, we propose a novel, accurate, and real-time approach for SDF-based collision detection between two solids, both represented as SDFs. Our primary strategy entails using interval calculations and the SDF gradient to guide the search for intersection points within the geometry. For arbitrary objects, we take inspiration from existing collision detection pipelines and segment the two SDFs into multiple parts with bounding volumes. Once potential collisions between two parts are identified, our method quickly computes comprehensive intersection information such as penetration depth, contact points, and contact normals. Our method is general in that it accepts both continuous and discrete SDF representations. Experiment results show that our method can detect collisions in high-precision models in real time, highlighting its potential for a wide range of applications in computer graphics and virtual reality.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"111 \",\"pages\":\"Article 102305\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839624000396\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624000396","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Real-time collision detection between general SDFs
Signed Distance Fields (SDFs) have found widespread utility in collision detection applications due to their superior query efficiency and ability to represent continuous geometries. However, little attention has been paid to calculating the intersection of two arbitrary SDFs. In this paper, we propose a novel, accurate, and real-time approach for SDF-based collision detection between two solids, both represented as SDFs. Our primary strategy entails using interval calculations and the SDF gradient to guide the search for intersection points within the geometry. For arbitrary objects, we take inspiration from existing collision detection pipelines and segment the two SDFs into multiple parts with bounding volumes. Once potential collisions between two parts are identified, our method quickly computes comprehensive intersection information such as penetration depth, contact points, and contact normals. Our method is general in that it accepts both continuous and discrete SDF representations. Experiment results show that our method can detect collisions in high-precision models in real time, highlighting its potential for a wide range of applications in computer graphics and virtual reality.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.