计算的委托私有匹配

Dimitris Mouris, Daniel Masny, Ni Trieu, Shubho Sengupta, Prasad Buddhavarapu, Benjamin M. Case
{"title":"计算的委托私有匹配","authors":"Dimitris Mouris, Daniel Masny, Ni Trieu, Shubho Sengupta, Prasad Buddhavarapu, Benjamin M. Case","doi":"10.56553/popets-2024-0040","DOIUrl":null,"url":null,"abstract":"Private matching for compute (PMC) establishes a match between two datasets owned by mutually distrusted parties (C and P) and allows the parties to input more data for the matched records for arbitrary downstream secure computation without rerunning the private matching component. The state-of-the-art PMC protocols only support two parties and assume that both parties can participate in computationally intensive secure computation. We observe that such operational overhead limits the adoption of these protocols to solely powerful entities as small data owners or devices with minimal computing power will not be able to participate.\n We introduce two protocols to delegate PMC from party P to untrusted cloud servers, called delegates, allowing multiple smaller P parties to provide inputs containing identifiers and associated values. Our Delegated Private Matching for Compute protocols, called DPMC and DsPMC, establish a join between the datasets of party C and multiple delegators P based on multiple identifiers and compute secret shares of associated values for the identifiers that the parties have in common. We introduce a rerandomizable encrypted oblivious pseudorandom function (OPRF) primitive, called EO, which allows two parties to encrypt, mask, and shuffle their data. Note that EO may be of independent interest. Our DsPMC protocol limits the leakages of DPMC by combining our EO scheme and secure three-party shuffling. Finally, our implementation demonstrates the efficiency of our constructions by outperforming related works by approximately 10x for the total protocol execution and by at least 20x for the computation on the delegators.","PeriodicalId":508905,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"78 ","pages":"12"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Delegated Private Matching for Compute\",\"authors\":\"Dimitris Mouris, Daniel Masny, Ni Trieu, Shubho Sengupta, Prasad Buddhavarapu, Benjamin M. Case\",\"doi\":\"10.56553/popets-2024-0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Private matching for compute (PMC) establishes a match between two datasets owned by mutually distrusted parties (C and P) and allows the parties to input more data for the matched records for arbitrary downstream secure computation without rerunning the private matching component. The state-of-the-art PMC protocols only support two parties and assume that both parties can participate in computationally intensive secure computation. We observe that such operational overhead limits the adoption of these protocols to solely powerful entities as small data owners or devices with minimal computing power will not be able to participate.\\n We introduce two protocols to delegate PMC from party P to untrusted cloud servers, called delegates, allowing multiple smaller P parties to provide inputs containing identifiers and associated values. Our Delegated Private Matching for Compute protocols, called DPMC and DsPMC, establish a join between the datasets of party C and multiple delegators P based on multiple identifiers and compute secret shares of associated values for the identifiers that the parties have in common. We introduce a rerandomizable encrypted oblivious pseudorandom function (OPRF) primitive, called EO, which allows two parties to encrypt, mask, and shuffle their data. Note that EO may be of independent interest. Our DsPMC protocol limits the leakages of DPMC by combining our EO scheme and secure three-party shuffling. Finally, our implementation demonstrates the efficiency of our constructions by outperforming related works by approximately 10x for the total protocol execution and by at least 20x for the computation on the delegators.\",\"PeriodicalId\":508905,\"journal\":{\"name\":\"IACR Cryptol. ePrint Arch.\",\"volume\":\"78 \",\"pages\":\"12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IACR Cryptol. ePrint Arch.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56553/popets-2024-0040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56553/popets-2024-0040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

计算专用匹配(PMC)在互不信任的双方(C 和 P)拥有的两个数据集之间建立匹配,并允许双方为匹配记录输入更多数据,以进行任意下游安全计算,而无需重新运行专用匹配组件。最先进的 PMC 协议仅支持两方,并假设双方都能参与计算密集型安全计算。我们注意到,这种操作开销限制了这些协议的采用,因为计算能力极低的小型数据所有者或设备将无法参与,因此只有强大的实体才能采用这些协议。我们介绍了两种将 PMC 从 P 方委托给不受信任的云服务器(称为委托方)的协议,允许多个较小的 P 方提供包含标识符和相关值的输入。我们的计算委托私有匹配协议(称为 DPMC 和 DsPMC)基于多个标识符在 C 方和多个委托方 P 的数据集之间建立连接,并计算各方共同标识符的关联值的秘密份额。我们引入了一种可重新随机化的加密遗忘伪随机函数(OPRF)原型,称为 EO,它允许双方对数据进行加密、屏蔽和洗牌。请注意,EO 可能具有独立的意义。我们的 DsPMC 协议结合了 EO 方案和安全的三方洗牌,从而限制了 DPMC 的泄漏。最后,我们的实现证明了我们构建的效率,在整个协议执行过程中,我们的性能大约是相关研究的 10 倍,而在委托人的计算方面,我们的性能至少是相关研究的 20 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Delegated Private Matching for Compute
Private matching for compute (PMC) establishes a match between two datasets owned by mutually distrusted parties (C and P) and allows the parties to input more data for the matched records for arbitrary downstream secure computation without rerunning the private matching component. The state-of-the-art PMC protocols only support two parties and assume that both parties can participate in computationally intensive secure computation. We observe that such operational overhead limits the adoption of these protocols to solely powerful entities as small data owners or devices with minimal computing power will not be able to participate. We introduce two protocols to delegate PMC from party P to untrusted cloud servers, called delegates, allowing multiple smaller P parties to provide inputs containing identifiers and associated values. Our Delegated Private Matching for Compute protocols, called DPMC and DsPMC, establish a join between the datasets of party C and multiple delegators P based on multiple identifiers and compute secret shares of associated values for the identifiers that the parties have in common. We introduce a rerandomizable encrypted oblivious pseudorandom function (OPRF) primitive, called EO, which allows two parties to encrypt, mask, and shuffle their data. Note that EO may be of independent interest. Our DsPMC protocol limits the leakages of DPMC by combining our EO scheme and secure three-party shuffling. Finally, our implementation demonstrates the efficiency of our constructions by outperforming related works by approximately 10x for the total protocol execution and by at least 20x for the computation on the delegators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MOSFHET: Optimized Software for FHE over the Torus 1/0 Shades of UC: Photonic Side-Channel Analysis of Universal Circuits White-box filtering attacks breaking SEL masking: from exponential to polynomial time Optimized Homomorphic Evaluation of Boolean Functions Time Sharing - A Novel Approach to Low-Latency Masking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1