Travis B. Thompson, Bradley Z. Vigil, Robert S. Young
{"title":"阿尔茨海默病与数学思维","authors":"Travis B. Thompson, Bradley Z. Vigil, Robert S. Young","doi":"10.1016/j.brain.2024.100094","DOIUrl":null,"url":null,"abstract":"<div><p>Throughout the 19th and 20th centuries, aided by advances in medical imaging, discoveries in physiology and medicine have added nearly 25 years to the average life expectancy. This resounding success brings with it a need to understand a broad range of age-related health conditions, such as dementia. Today, mathematics, neuroimaging and scientific computing are being combined with fresh insights, from animal models, to study the brain and to better understand the etiology and progression of Alzheimer’s disease, the most common cause of age-related dementia in humans. In this manuscript, we offer a brief primer to the reader interested in engaging with the exciting field of mathematical modeling and scientific computing to advance the study of the brain and, in particular, human AD research.</p><p><strong>Statement of Significance</strong> Modeling Alzheimer’s disease is a highly interdisciplinary field and finding an effective starting point can be a considerable challenge. To address this challenge, this manuscript briefly highlights some central components of AD related protein pathology, useful classes of mathematical models for brain and AD research and effective computational resources for the practical prospective practitioner.</p></div>","PeriodicalId":72449,"journal":{"name":"Brain multiphysics","volume":"6 ","pages":"Article 100094"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666522024000054/pdfft?md5=68c335b8652a866dd25fe222cee1915e&pid=1-s2.0-S2666522024000054-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Alzheimer’s disease and the mathematical mind\",\"authors\":\"Travis B. Thompson, Bradley Z. Vigil, Robert S. Young\",\"doi\":\"10.1016/j.brain.2024.100094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Throughout the 19th and 20th centuries, aided by advances in medical imaging, discoveries in physiology and medicine have added nearly 25 years to the average life expectancy. This resounding success brings with it a need to understand a broad range of age-related health conditions, such as dementia. Today, mathematics, neuroimaging and scientific computing are being combined with fresh insights, from animal models, to study the brain and to better understand the etiology and progression of Alzheimer’s disease, the most common cause of age-related dementia in humans. In this manuscript, we offer a brief primer to the reader interested in engaging with the exciting field of mathematical modeling and scientific computing to advance the study of the brain and, in particular, human AD research.</p><p><strong>Statement of Significance</strong> Modeling Alzheimer’s disease is a highly interdisciplinary field and finding an effective starting point can be a considerable challenge. To address this challenge, this manuscript briefly highlights some central components of AD related protein pathology, useful classes of mathematical models for brain and AD research and effective computational resources for the practical prospective practitioner.</p></div>\",\"PeriodicalId\":72449,\"journal\":{\"name\":\"Brain multiphysics\",\"volume\":\"6 \",\"pages\":\"Article 100094\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666522024000054/pdfft?md5=68c335b8652a866dd25fe222cee1915e&pid=1-s2.0-S2666522024000054-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain multiphysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666522024000054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain multiphysics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666522024000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Throughout the 19th and 20th centuries, aided by advances in medical imaging, discoveries in physiology and medicine have added nearly 25 years to the average life expectancy. This resounding success brings with it a need to understand a broad range of age-related health conditions, such as dementia. Today, mathematics, neuroimaging and scientific computing are being combined with fresh insights, from animal models, to study the brain and to better understand the etiology and progression of Alzheimer’s disease, the most common cause of age-related dementia in humans. In this manuscript, we offer a brief primer to the reader interested in engaging with the exciting field of mathematical modeling and scientific computing to advance the study of the brain and, in particular, human AD research.
Statement of Significance Modeling Alzheimer’s disease is a highly interdisciplinary field and finding an effective starting point can be a considerable challenge. To address this challenge, this manuscript briefly highlights some central components of AD related protein pathology, useful classes of mathematical models for brain and AD research and effective computational resources for the practical prospective practitioner.