Stefan Heid , Jonas Hanselle , Johannes Fürnkranz , Eyke Hüllermeier
{"title":"为情境决策学习决策目录:评分系统案例","authors":"Stefan Heid , Jonas Hanselle , Johannes Fürnkranz , Eyke Hüllermeier","doi":"10.1016/j.ijar.2024.109190","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we formalize the problem of learning coherent collections of decision models, which we call decision catalogues, and illustrate it for the case where models are scoring systems. This problem is motivated by the recent rise of algorithmic decision-making and the idea to improve human decision-making through machine learning, in conjunction with the observation that decision models should be situated in terms of their complexity and resource requirements: Instead of constructing a single decision model and using this model in all cases, different models might be appropriate depending on the decision context. Decision catalogues are supposed to support a seamless transition from very simple, resource-efficient to more sophisticated but also more demanding models. We present a general algorithmic framework for inducing such catalogues from training data, which tackles the learning task as a problem of searching the space of candidate catalogues systematically and, to this end, makes use of heuristic search methods. We also present a concrete instantiation of this framework as well as empirical studies for performance evaluation, which, in a nutshell, show that greedy search is an efficient and hard-to-beat strategy for the construction of catalogues of scoring systems.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"171 ","pages":"Article 109190"},"PeriodicalIF":3.2000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0888613X2400077X/pdfft?md5=dbbec50c1dcf50fb106bcfb2cf8b65f9&pid=1-s2.0-S0888613X2400077X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Learning decision catalogues for situated decision making: The case of scoring systems\",\"authors\":\"Stefan Heid , Jonas Hanselle , Johannes Fürnkranz , Eyke Hüllermeier\",\"doi\":\"10.1016/j.ijar.2024.109190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we formalize the problem of learning coherent collections of decision models, which we call decision catalogues, and illustrate it for the case where models are scoring systems. This problem is motivated by the recent rise of algorithmic decision-making and the idea to improve human decision-making through machine learning, in conjunction with the observation that decision models should be situated in terms of their complexity and resource requirements: Instead of constructing a single decision model and using this model in all cases, different models might be appropriate depending on the decision context. Decision catalogues are supposed to support a seamless transition from very simple, resource-efficient to more sophisticated but also more demanding models. We present a general algorithmic framework for inducing such catalogues from training data, which tackles the learning task as a problem of searching the space of candidate catalogues systematically and, to this end, makes use of heuristic search methods. We also present a concrete instantiation of this framework as well as empirical studies for performance evaluation, which, in a nutshell, show that greedy search is an efficient and hard-to-beat strategy for the construction of catalogues of scoring systems.</p></div>\",\"PeriodicalId\":13842,\"journal\":{\"name\":\"International Journal of Approximate Reasoning\",\"volume\":\"171 \",\"pages\":\"Article 109190\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0888613X2400077X/pdfft?md5=dbbec50c1dcf50fb106bcfb2cf8b65f9&pid=1-s2.0-S0888613X2400077X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Approximate Reasoning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0888613X2400077X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X2400077X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Learning decision catalogues for situated decision making: The case of scoring systems
In this paper, we formalize the problem of learning coherent collections of decision models, which we call decision catalogues, and illustrate it for the case where models are scoring systems. This problem is motivated by the recent rise of algorithmic decision-making and the idea to improve human decision-making through machine learning, in conjunction with the observation that decision models should be situated in terms of their complexity and resource requirements: Instead of constructing a single decision model and using this model in all cases, different models might be appropriate depending on the decision context. Decision catalogues are supposed to support a seamless transition from very simple, resource-efficient to more sophisticated but also more demanding models. We present a general algorithmic framework for inducing such catalogues from training data, which tackles the learning task as a problem of searching the space of candidate catalogues systematically and, to this end, makes use of heuristic search methods. We also present a concrete instantiation of this framework as well as empirical studies for performance evaluation, which, in a nutshell, show that greedy search is an efficient and hard-to-beat strategy for the construction of catalogues of scoring systems.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.