Monika Doubrawa, P. Stassen, Marci M. Robinson, R. Speijer
{"title":"古新世-始新世热极盛期之前和期间美国大西洋沿岸平原的古环境和古生态动态","authors":"Monika Doubrawa, P. Stassen, Marci M. Robinson, R. Speijer","doi":"10.61551/gsjfr.54.2.143","DOIUrl":null,"url":null,"abstract":"\n We studied the rapid paleo-environmental changes and the corresponding biotic responses of benthic foraminifera of a shallow shelf site during the late Paleocene and the Paleocene-Eocene Thermal Maximum (PETM). The PETM is globally characterized by a negative δ13C excursion in marine and terrestrial sediments. Isotope data from the Atlantic Coastal Plain from the South Dover Bridge core, Maryland, show an additional small δ13C excursion just below the base of the PETM: the “pre-onset excursion” (POE). The benthic foraminiferal and coupled grain-size record of the late Paleocene indicates a well-oxygenated, current-dominated environment with a stable, high food supply. During the POE, bottom currents become subdued and finer-grained sediment accumulation increased. These changes are partially reversed after the end of the POE. Before the PETM the river influence increases again, food supply becomes more pulsed and the benthic taxa, typically connected to the PETM, start to appear in those gradually warming conditions. During the PETM, the environment shifts to a river-dominated one, with strongly reduced currents. The low-diversity PETM fauna thrives under episodic low-oxygen conditions, caused by river-induced stratification, while the Paleocene assemblage nearly vanishes from the record. Gradually the environment begins to recover, the grain size shows an uptick in bottom currents and pre-PETM foraminifera become more abundant again, indicating increased oxygen levels and a more stable food supply. While the overall environmental shifts at South Dover Bridge fit within the observations across the shelf, the POE related insights are so far unique. Our bathymetric reconstructions show an outer neritic paleodepth (∼100 m) during the Paleocene, with a modest sea level rise in the core phase of the PETM, which is subsequently reversed during the recovery phase.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paleoenvironmental and Paleoecological Dynamics of the U.S. Atlantic Coastal Plain Prior to and During the Paleocene-Eocene Thermal Maximum\",\"authors\":\"Monika Doubrawa, P. Stassen, Marci M. Robinson, R. Speijer\",\"doi\":\"10.61551/gsjfr.54.2.143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We studied the rapid paleo-environmental changes and the corresponding biotic responses of benthic foraminifera of a shallow shelf site during the late Paleocene and the Paleocene-Eocene Thermal Maximum (PETM). The PETM is globally characterized by a negative δ13C excursion in marine and terrestrial sediments. Isotope data from the Atlantic Coastal Plain from the South Dover Bridge core, Maryland, show an additional small δ13C excursion just below the base of the PETM: the “pre-onset excursion” (POE). The benthic foraminiferal and coupled grain-size record of the late Paleocene indicates a well-oxygenated, current-dominated environment with a stable, high food supply. During the POE, bottom currents become subdued and finer-grained sediment accumulation increased. These changes are partially reversed after the end of the POE. Before the PETM the river influence increases again, food supply becomes more pulsed and the benthic taxa, typically connected to the PETM, start to appear in those gradually warming conditions. During the PETM, the environment shifts to a river-dominated one, with strongly reduced currents. The low-diversity PETM fauna thrives under episodic low-oxygen conditions, caused by river-induced stratification, while the Paleocene assemblage nearly vanishes from the record. Gradually the environment begins to recover, the grain size shows an uptick in bottom currents and pre-PETM foraminifera become more abundant again, indicating increased oxygen levels and a more stable food supply. While the overall environmental shifts at South Dover Bridge fit within the observations across the shelf, the POE related insights are so far unique. Our bathymetric reconstructions show an outer neritic paleodepth (∼100 m) during the Paleocene, with a modest sea level rise in the core phase of the PETM, which is subsequently reversed during the recovery phase.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.61551/gsjfr.54.2.143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.61551/gsjfr.54.2.143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Paleoenvironmental and Paleoecological Dynamics of the U.S. Atlantic Coastal Plain Prior to and During the Paleocene-Eocene Thermal Maximum
We studied the rapid paleo-environmental changes and the corresponding biotic responses of benthic foraminifera of a shallow shelf site during the late Paleocene and the Paleocene-Eocene Thermal Maximum (PETM). The PETM is globally characterized by a negative δ13C excursion in marine and terrestrial sediments. Isotope data from the Atlantic Coastal Plain from the South Dover Bridge core, Maryland, show an additional small δ13C excursion just below the base of the PETM: the “pre-onset excursion” (POE). The benthic foraminiferal and coupled grain-size record of the late Paleocene indicates a well-oxygenated, current-dominated environment with a stable, high food supply. During the POE, bottom currents become subdued and finer-grained sediment accumulation increased. These changes are partially reversed after the end of the POE. Before the PETM the river influence increases again, food supply becomes more pulsed and the benthic taxa, typically connected to the PETM, start to appear in those gradually warming conditions. During the PETM, the environment shifts to a river-dominated one, with strongly reduced currents. The low-diversity PETM fauna thrives under episodic low-oxygen conditions, caused by river-induced stratification, while the Paleocene assemblage nearly vanishes from the record. Gradually the environment begins to recover, the grain size shows an uptick in bottom currents and pre-PETM foraminifera become more abundant again, indicating increased oxygen levels and a more stable food supply. While the overall environmental shifts at South Dover Bridge fit within the observations across the shelf, the POE related insights are so far unique. Our bathymetric reconstructions show an outer neritic paleodepth (∼100 m) during the Paleocene, with a modest sea level rise in the core phase of the PETM, which is subsequently reversed during the recovery phase.