服务缓存辅助移动边缘计算中基于深度强化学习的任务卸载和服务迁移策略

Hongchang Ke, Wang Hui, Hongbin Sun, Halvin Yang
{"title":"服务缓存辅助移动边缘计算中基于深度强化学习的任务卸载和服务迁移策略","authors":"Hongchang Ke, Wang Hui, Hongbin Sun, Halvin Yang","doi":"10.23919/JCC.fa.2023-0474.202404","DOIUrl":null,"url":null,"abstract":"Emerging mobile edge computing (MEC) is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment (MWE) with limited computational resources and energy. Due to the homogeneity of request tasks from one MWE during a long-term time period, it is vital to predeploy the particular service cachings required by the request tasks at the MEC server. In this paper, we model a service caching-assisted MEC framework that takes into account the constraint on the number of service cachings hosted by each edge server and the migration of request tasks from the current edge server to another edge server with service caching required by tasks. Furthermore, we propose a multiagent deep reinforcement learning-based computation offloading and task migrating decision-making scheme (MBOMS) to minimize the long-term average weighted cost. The proposed MBOMS can learn the near-optimal offloading and migrating decision-making policy by centralized training and decentralized execution. Systematic and comprehensive simulation results reveal that our proposed MBOMS can converge well after training and outperforms the other five baseline algorithms.","PeriodicalId":504777,"journal":{"name":"China Communications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep reinforcement learning-based task offloading and service migrating policies in service caching-assisted mobile edge computing\",\"authors\":\"Hongchang Ke, Wang Hui, Hongbin Sun, Halvin Yang\",\"doi\":\"10.23919/JCC.fa.2023-0474.202404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging mobile edge computing (MEC) is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment (MWE) with limited computational resources and energy. Due to the homogeneity of request tasks from one MWE during a long-term time period, it is vital to predeploy the particular service cachings required by the request tasks at the MEC server. In this paper, we model a service caching-assisted MEC framework that takes into account the constraint on the number of service cachings hosted by each edge server and the migration of request tasks from the current edge server to another edge server with service caching required by tasks. Furthermore, we propose a multiagent deep reinforcement learning-based computation offloading and task migrating decision-making scheme (MBOMS) to minimize the long-term average weighted cost. The proposed MBOMS can learn the near-optimal offloading and migrating decision-making policy by centralized training and decentralized execution. Systematic and comprehensive simulation results reveal that our proposed MBOMS can converge well after training and outperforms the other five baseline algorithms.\",\"PeriodicalId\":504777,\"journal\":{\"name\":\"China Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/JCC.fa.2023-0474.202404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/JCC.fa.2023-0474.202404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新兴的移动边缘计算(MEC)被认为是一种可行的解决方案,可卸载计算资源和能源有限的移动无线设备(MWE)产生的计算密集型请求任务。由于来自一个 MWE 的请求任务在长期时间内具有同质性,因此在 MEC 服务器上预先部署请求任务所需的特定服务缓存至关重要。在本文中,我们建立了一个服务缓存辅助 MEC 框架模型,该框架考虑了对每个边缘服务器托管的服务缓存数量的限制,以及请求任务从当前边缘服务器迁移到另一个具有任务所需的服务缓存的边缘服务器的情况。此外,我们还提出了一种基于多代理深度强化学习的计算卸载和任务迁移决策方案(MBOMS),以最小化长期平均加权成本。所提出的 MBOMS 可以通过集中训练和分散执行来学习近乎最优的卸载和迁移决策策略。系统而全面的仿真结果表明,我们提出的 MBOMS 经过训练后可以很好地收敛,并且优于其他五种基线算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep reinforcement learning-based task offloading and service migrating policies in service caching-assisted mobile edge computing
Emerging mobile edge computing (MEC) is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment (MWE) with limited computational resources and energy. Due to the homogeneity of request tasks from one MWE during a long-term time period, it is vital to predeploy the particular service cachings required by the request tasks at the MEC server. In this paper, we model a service caching-assisted MEC framework that takes into account the constraint on the number of service cachings hosted by each edge server and the migration of request tasks from the current edge server to another edge server with service caching required by tasks. Furthermore, we propose a multiagent deep reinforcement learning-based computation offloading and task migrating decision-making scheme (MBOMS) to minimize the long-term average weighted cost. The proposed MBOMS can learn the near-optimal offloading and migrating decision-making policy by centralized training and decentralized execution. Systematic and comprehensive simulation results reveal that our proposed MBOMS can converge well after training and outperforms the other five baseline algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intellicise model transmission for semantic communication in intelligence-native 6G networks Variational learned talking-head semantic coded transmission system Physical-layer secret key generation for dual-task scenarios Intelligent dynamic heterogeneous redundancy architecture for IoT systems Joint optimization for on-demand deployment of UAVs and spectrum allocation in UAVs-assisted communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1