在 H2O2 中对 Ge(100) 进行纳米碳辅助化学蚀刻

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY Electrochemistry Communications Pub Date : 2024-04-25 DOI:10.1016/j.elecom.2024.107735
Junhuan Li, Seiya Yamamoto, Kouji Inagaki, Kenta Arima
{"title":"在 H2O2 中对 Ge(100) 进行纳米碳辅助化学蚀刻","authors":"Junhuan Li,&nbsp;Seiya Yamamoto,&nbsp;Kouji Inagaki,&nbsp;Kenta Arima","doi":"10.1016/j.elecom.2024.107735","DOIUrl":null,"url":null,"abstract":"<div><p>We utilized graphene oxide (GO) flakes as a starting material to conduct nanocarbon (NC)-assisted chemical etching of Ge(1<!--> <!-->0<!--> <!-->0) surfaces in H<sub>2</sub>O<sub>2</sub> solutions. Upon initial etching in H<sub>2</sub>O<sub>2</sub>, a pitted morphology formed beneath the loaded nanocarbon. The etch pits exhibited a tendency to expand, with edges assuming square-like shapes in H<sub>2</sub>O<sub>2</sub> solutions. This phenomenon is reminiscent of an inverted pyramidal structure observed during enhanced etching of a Ge surface loaded with metallic particles, exposing (1<!--> <!-->1<!--> <!-->1) microfacets. As the etching progressed, noticeable lateral etching occurred on the Ge surface. Consequently, the small pits merged to form larger hollows, potentially exceeding the size of the initial GO flake. These etching properties were analyzed based on electrochemical reactions there, or the injection of holes created by the enhanced reduction of H<sub>2</sub>O<sub>2</sub> molecules on nanocarbons, which were compared to those observed when using O<sub>2</sub>-dissolved water as an etchant. Additionally, we provide guidelines for achieving more homogeneous and deeper etch structures using a loaded nanocarbon catalyst in H<sub>2</sub>O<sub>2</sub>.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"163 ","pages":"Article 107735"},"PeriodicalIF":4.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S138824812400078X/pdfft?md5=f80b8d5dfda141a399ad1e76350de614&pid=1-s2.0-S138824812400078X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanocarbon-assisted chemical etching of Ge(100) in H2O2\",\"authors\":\"Junhuan Li,&nbsp;Seiya Yamamoto,&nbsp;Kouji Inagaki,&nbsp;Kenta Arima\",\"doi\":\"10.1016/j.elecom.2024.107735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We utilized graphene oxide (GO) flakes as a starting material to conduct nanocarbon (NC)-assisted chemical etching of Ge(1<!--> <!-->0<!--> <!-->0) surfaces in H<sub>2</sub>O<sub>2</sub> solutions. Upon initial etching in H<sub>2</sub>O<sub>2</sub>, a pitted morphology formed beneath the loaded nanocarbon. The etch pits exhibited a tendency to expand, with edges assuming square-like shapes in H<sub>2</sub>O<sub>2</sub> solutions. This phenomenon is reminiscent of an inverted pyramidal structure observed during enhanced etching of a Ge surface loaded with metallic particles, exposing (1<!--> <!-->1<!--> <!-->1) microfacets. As the etching progressed, noticeable lateral etching occurred on the Ge surface. Consequently, the small pits merged to form larger hollows, potentially exceeding the size of the initial GO flake. These etching properties were analyzed based on electrochemical reactions there, or the injection of holes created by the enhanced reduction of H<sub>2</sub>O<sub>2</sub> molecules on nanocarbons, which were compared to those observed when using O<sub>2</sub>-dissolved water as an etchant. Additionally, we provide guidelines for achieving more homogeneous and deeper etch structures using a loaded nanocarbon catalyst in H<sub>2</sub>O<sub>2</sub>.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"163 \",\"pages\":\"Article 107735\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S138824812400078X/pdfft?md5=f80b8d5dfda141a399ad1e76350de614&pid=1-s2.0-S138824812400078X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S138824812400078X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138824812400078X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

我们利用氧化石墨烯(GO)薄片作为起始材料,在 H2O2 溶液中对 Ge(1 0 0) 表面进行纳米碳(NC)辅助化学蚀刻。在 H2O2 溶液中进行初始蚀刻时,负载的纳米碳下面会形成凹坑形态。在 H2O2 溶液中,蚀刻坑呈扩大趋势,边缘呈方形。这种现象让人联想到在对装有金属颗粒的 Ge 表面进行增强蚀刻时观察到的倒金字塔结构,这种蚀刻会暴露出 (1 1 1) 微表面。随着蚀刻的进行,Ge 表面出现了明显的横向蚀刻。因此,小凹坑合并形成了较大的空洞,有可能超过最初的 GO 片的大小。这些蚀刻特性是根据电化学反应或纳米碳上 H2O2 分子增强还原所产生的孔注入进行分析的,并与使用 O2 溶解水作为蚀刻剂时观察到的蚀刻特性进行了比较。此外,我们还为在 H2O2 中使用负载纳米碳催化剂实现更均匀、更深的蚀刻结构提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanocarbon-assisted chemical etching of Ge(100) in H2O2

We utilized graphene oxide (GO) flakes as a starting material to conduct nanocarbon (NC)-assisted chemical etching of Ge(1 0 0) surfaces in H2O2 solutions. Upon initial etching in H2O2, a pitted morphology formed beneath the loaded nanocarbon. The etch pits exhibited a tendency to expand, with edges assuming square-like shapes in H2O2 solutions. This phenomenon is reminiscent of an inverted pyramidal structure observed during enhanced etching of a Ge surface loaded with metallic particles, exposing (1 1 1) microfacets. As the etching progressed, noticeable lateral etching occurred on the Ge surface. Consequently, the small pits merged to form larger hollows, potentially exceeding the size of the initial GO flake. These etching properties were analyzed based on electrochemical reactions there, or the injection of holes created by the enhanced reduction of H2O2 molecules on nanocarbons, which were compared to those observed when using O2-dissolved water as an etchant. Additionally, we provide guidelines for achieving more homogeneous and deeper etch structures using a loaded nanocarbon catalyst in H2O2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
期刊最新文献
Electrochemical detection of pesticides: A comprehensive review on voltammetric determination of malathion, 2,4-D, carbaryl, and glyphosate In-situ solvothermal synthesis of free-binder NiCo2S4/nickel foam electrode for supercapacitor application: Effects of CTAB surfactant Investigation of the modification of gold electrodes by electrochemical molecularly imprinted polymers as a selective layer for the trace level electroanalysis of PAH Corrosion of nickel foam electrodes during hydrothermal reactions: The influence of a simple protective carbon black coating Low-power and cost-effective readout circuit design for compact semiconductor gas sensor systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1