{"title":"人口统计学和社会经济健康决定因素可预测是否继续参与 CT 肺癌筛查计划。","authors":"","doi":"10.1067/j.cpradiol.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>We developed machine learning (ML) models to assess demographic and socioeconomic status (SES) variables’ value in predicting continued participation in a low-dose CT lung cancer screening (LCS) program.</p></div><div><h3>Materials and Methods</h3><p>480 LCS subjects were retrospectively examined for the following outcomes: (#1) no follow-up (single LCS scan) vs. multiple follow-ups (220 and 260 subjects respectively) and (#2) absent or delayed (>1 month past the due date) follow-up vs timely follow-up (356 and 124 subjects respectively). We quantified the contributions of 14 socioeconomic, demographic, and clinical predictors to LCS adherence, and validated and compared prediction performances of multivariate logistic regression (MLR), support vector machine (SVM) and shallow neural network (NN) models.</p></div><div><h3>Results</h3><p>For outcome #1, age, sex, race, insurance status, personal cancer history, and median household income were found to be associated with returning for follow-ups. For outcome #2, age, sex, race, and insurance status were significant predictor of absent/delayed LCS follow-up. Across 5-fold cross-validation, the MLR model achieved an average AUC of 0.732 (95% CI, 0.661-0.803) for outcome #1 and 0.633 (95% CI, 0.602-0.664) for outcome #2 and is the model with best predictive performance overall, whereas NN and SVM tended to overfit training data and fell short on testing data performance for either outcome.</p></div><div><h3>Conclusions</h3><p>We identified significant predictors of LCS adherence, and our ML models can predict which subjects are at higher risk of receiving no or delayed LCS follow-ups. Our results could inform data-driven interventions to engage vulnerable populations and extend the benefits of LCS.</p></div>","PeriodicalId":51617,"journal":{"name":"Current Problems in Diagnostic Radiology","volume":"53 5","pages":"Pages 552-559"},"PeriodicalIF":1.5000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S036301882400077X/pdfft?md5=048cc707df6a7db501d32b80070ddcee&pid=1-s2.0-S036301882400077X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Demographics and socioeconomic determinants of health predict continued participation in a CT lung cancer screening program\",\"authors\":\"\",\"doi\":\"10.1067/j.cpradiol.2024.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>We developed machine learning (ML) models to assess demographic and socioeconomic status (SES) variables’ value in predicting continued participation in a low-dose CT lung cancer screening (LCS) program.</p></div><div><h3>Materials and Methods</h3><p>480 LCS subjects were retrospectively examined for the following outcomes: (#1) no follow-up (single LCS scan) vs. multiple follow-ups (220 and 260 subjects respectively) and (#2) absent or delayed (>1 month past the due date) follow-up vs timely follow-up (356 and 124 subjects respectively). We quantified the contributions of 14 socioeconomic, demographic, and clinical predictors to LCS adherence, and validated and compared prediction performances of multivariate logistic regression (MLR), support vector machine (SVM) and shallow neural network (NN) models.</p></div><div><h3>Results</h3><p>For outcome #1, age, sex, race, insurance status, personal cancer history, and median household income were found to be associated with returning for follow-ups. For outcome #2, age, sex, race, and insurance status were significant predictor of absent/delayed LCS follow-up. Across 5-fold cross-validation, the MLR model achieved an average AUC of 0.732 (95% CI, 0.661-0.803) for outcome #1 and 0.633 (95% CI, 0.602-0.664) for outcome #2 and is the model with best predictive performance overall, whereas NN and SVM tended to overfit training data and fell short on testing data performance for either outcome.</p></div><div><h3>Conclusions</h3><p>We identified significant predictors of LCS adherence, and our ML models can predict which subjects are at higher risk of receiving no or delayed LCS follow-ups. Our results could inform data-driven interventions to engage vulnerable populations and extend the benefits of LCS.</p></div>\",\"PeriodicalId\":51617,\"journal\":{\"name\":\"Current Problems in Diagnostic Radiology\",\"volume\":\"53 5\",\"pages\":\"Pages 552-559\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S036301882400077X/pdfft?md5=048cc707df6a7db501d32b80070ddcee&pid=1-s2.0-S036301882400077X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Problems in Diagnostic Radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S036301882400077X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Problems in Diagnostic Radiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036301882400077X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Demographics and socioeconomic determinants of health predict continued participation in a CT lung cancer screening program
Purpose
We developed machine learning (ML) models to assess demographic and socioeconomic status (SES) variables’ value in predicting continued participation in a low-dose CT lung cancer screening (LCS) program.
Materials and Methods
480 LCS subjects were retrospectively examined for the following outcomes: (#1) no follow-up (single LCS scan) vs. multiple follow-ups (220 and 260 subjects respectively) and (#2) absent or delayed (>1 month past the due date) follow-up vs timely follow-up (356 and 124 subjects respectively). We quantified the contributions of 14 socioeconomic, demographic, and clinical predictors to LCS adherence, and validated and compared prediction performances of multivariate logistic regression (MLR), support vector machine (SVM) and shallow neural network (NN) models.
Results
For outcome #1, age, sex, race, insurance status, personal cancer history, and median household income were found to be associated with returning for follow-ups. For outcome #2, age, sex, race, and insurance status were significant predictor of absent/delayed LCS follow-up. Across 5-fold cross-validation, the MLR model achieved an average AUC of 0.732 (95% CI, 0.661-0.803) for outcome #1 and 0.633 (95% CI, 0.602-0.664) for outcome #2 and is the model with best predictive performance overall, whereas NN and SVM tended to overfit training data and fell short on testing data performance for either outcome.
Conclusions
We identified significant predictors of LCS adherence, and our ML models can predict which subjects are at higher risk of receiving no or delayed LCS follow-ups. Our results could inform data-driven interventions to engage vulnerable populations and extend the benefits of LCS.
期刊介绍:
Current Problems in Diagnostic Radiology covers important and controversial topics in radiology. Each issue presents important viewpoints from leading radiologists. High-quality reproductions of radiographs, CT scans, MR images, and sonograms clearly depict what is being described in each article. Also included are valuable updates relevant to other areas of practice, such as medical-legal issues or archiving systems. With new multi-topic format and image-intensive style, Current Problems in Diagnostic Radiology offers an outstanding, time-saving investigation into current topics most relevant to radiologists.