Ping Li, Wen-Ping Liao, Qi-Huan Zeng, Qi-Bin Sun, Min-Yu Li
{"title":"利用测光和星震学探索γ Dor双星RX Dra的物理特性","authors":"Ping Li, Wen-Ping Liao, Qi-Huan Zeng, Qi-Bin Sun, Min-Yu Li","doi":"10.1016/j.newast.2024.102234","DOIUrl":null,"url":null,"abstract":"<div><p>We model the TESS light curve of the binary system RX Dra, and also first calculate a lot of theoretical models to fit the g-mode frequencies previously detected from the TESS series of this system. The mass ratio is determined to be <span><math><mi>q</mi></math></span>=0.9026<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0032</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0032</mn></mrow></msubsup></math></span>. We newly found that there are 16 frequencies (F1–F7, F11–F20) identified as dipole g-modes, two frequencies (F21, F22) identified as quadrupole g-modes, and another two frequencies (F23, F24) identified as g-sextupole modes, based on these model fits. The primary star is newly determined to be a <span><math><mi>γ</mi></math></span> Dor pulsator in the main-sequence stage with a rotation period of about 5.7<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></msubsup></math></span> days, rotating slower than the orbital motion. The fundamental parameters of two components are firstly estimated as follows: <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=1.53<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>17</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>00</mn></mrow></msubsup></math></span> M <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>= 1.38<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>00</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>18</mn></mrow></msubsup></math></span> M <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=7240<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>44</mn></mrow><mrow><mo>+</mo><mn>490</mn></mrow></msubsup></math></span> K, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>=6747<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>221</mn></mrow><mrow><mo>+</mo><mn>201</mn></mrow></msubsup></math></span> K, <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=1.8288<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0959</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0260</mn></mrow></msubsup></math></span> R <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>= 1.3075<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2543</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0450</mn></mrow></msubsup></math></span> R <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=8.2830<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>6036</mn></mrow><mrow><mo>+</mo><mn>1</mn><mo>.</mo><mn>8015</mn></mrow></msubsup></math></span> L <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>= 3.4145<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>1843</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>1320</mn></mrow></msubsup></math></span> L <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>. Our results show that the secondary star is in the solar-like pulsator region of the H–R diagram, indicating that it could be a pulsating star of this type. Finally, the radius of the convective core of the primary star is estimated to be about 0.1403<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0000</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0206</mn></mrow></msubsup></math></span> R <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"111 ","pages":"Article 102234"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the physical properties of the γ Dor binary star RX Dra with photometry and asteroseismology\",\"authors\":\"Ping Li, Wen-Ping Liao, Qi-Huan Zeng, Qi-Bin Sun, Min-Yu Li\",\"doi\":\"10.1016/j.newast.2024.102234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We model the TESS light curve of the binary system RX Dra, and also first calculate a lot of theoretical models to fit the g-mode frequencies previously detected from the TESS series of this system. The mass ratio is determined to be <span><math><mi>q</mi></math></span>=0.9026<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0032</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0032</mn></mrow></msubsup></math></span>. We newly found that there are 16 frequencies (F1–F7, F11–F20) identified as dipole g-modes, two frequencies (F21, F22) identified as quadrupole g-modes, and another two frequencies (F23, F24) identified as g-sextupole modes, based on these model fits. The primary star is newly determined to be a <span><math><mi>γ</mi></math></span> Dor pulsator in the main-sequence stage with a rotation period of about 5.7<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>7</mn></mrow></msubsup></math></span> days, rotating slower than the orbital motion. The fundamental parameters of two components are firstly estimated as follows: <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=1.53<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>17</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>00</mn></mrow></msubsup></math></span> M <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>= 1.38<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>00</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>18</mn></mrow></msubsup></math></span> M <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=7240<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>44</mn></mrow><mrow><mo>+</mo><mn>490</mn></mrow></msubsup></math></span> K, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>=6747<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>221</mn></mrow><mrow><mo>+</mo><mn>201</mn></mrow></msubsup></math></span> K, <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=1.8288<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0959</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0260</mn></mrow></msubsup></math></span> R <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>= 1.3075<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>2543</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0450</mn></mrow></msubsup></math></span> R <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>=8.2830<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>6036</mn></mrow><mrow><mo>+</mo><mn>1</mn><mo>.</mo><mn>8015</mn></mrow></msubsup></math></span> L <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>= 3.4145<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>1843</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>1320</mn></mrow></msubsup></math></span> L <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>. Our results show that the secondary star is in the solar-like pulsator region of the H–R diagram, indicating that it could be a pulsating star of this type. Finally, the radius of the convective core of the primary star is estimated to be about 0.1403<span><math><msubsup><mrow></mrow><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>0000</mn></mrow><mrow><mo>+</mo><mn>0</mn><mo>.</mo><mn>0206</mn></mrow></msubsup></math></span> R <span><math><msub><mrow></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>.</p></div>\",\"PeriodicalId\":54727,\"journal\":{\"name\":\"New Astronomy\",\"volume\":\"111 \",\"pages\":\"Article 102234\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1384107624000484\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107624000484","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
我们对双星系统 RX Dra 的 TESS 光曲线进行了建模,并首先计算了大量理论模型,以拟合之前从该系统的 TESS 系列中探测到的 g 模式频率。质量比被确定为q=0.9026-0.0032+0.0032。根据这些模型拟合,我们新发现有 16 个频率(F1-F7,F11-F20)被确定为偶极 g 模式,两个频率(F21,F22)被确定为四极 g 模式,另外两个频率(F23,F24)被确定为 g 六极模式。新测定的主星是一颗处于主序阶段的γ Dor 脉动器,自转周期约为 5.7-0.2+0.7 天,自转速度慢于轨道运动。首先估算出两个分量的基本参数如下m1=1.53-0.17+0.00 m ⊙, m2=1.38-0.00+0.18 m ⊙, t1=7240-44+490 k, t2=6747-221+201 k, r1=1.8288-0.0959+0.0260 R ⊙,R2= 1.3075-0.2543+0.0450 R ⊙,L1=8.2830-0.6036+1.8015 L ⊙,L2=3.4145-0.1843+0.1320 L ⊙。我们的结果表明,这颗次星位于 H-R 图中的类太阳脉动器区域,表明它可能是这一类型的脉动星。最后,主星对流核心的半径估计约为 0.1403-0.0000+0.0206 R ⊙。
Exploring the physical properties of the γ Dor binary star RX Dra with photometry and asteroseismology
We model the TESS light curve of the binary system RX Dra, and also first calculate a lot of theoretical models to fit the g-mode frequencies previously detected from the TESS series of this system. The mass ratio is determined to be =0.9026. We newly found that there are 16 frequencies (F1–F7, F11–F20) identified as dipole g-modes, two frequencies (F21, F22) identified as quadrupole g-modes, and another two frequencies (F23, F24) identified as g-sextupole modes, based on these model fits. The primary star is newly determined to be a Dor pulsator in the main-sequence stage with a rotation period of about 5.7 days, rotating slower than the orbital motion. The fundamental parameters of two components are firstly estimated as follows: =1.53 M , = 1.38 M , =7240 K, =6747 K, =1.8288 R , = 1.3075 R , =8.2830 L and = 3.4145 L . Our results show that the secondary star is in the solar-like pulsator region of the H–R diagram, indicating that it could be a pulsating star of this type. Finally, the radius of the convective core of the primary star is estimated to be about 0.1403 R .
期刊介绍:
New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation.
New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.