{"title":"用于目标识别的概率知识图谱","authors":"Chang Liu, Kaimin Xiao, Cuinan Yu, Yipin Lei, Kangbo Lyu, Tingzhong Tian, Dan Zhao, Fengfeng Zhou, Haidong Tang, Jianyang Zeng","doi":"10.1371/journal.pcbi.1011945","DOIUrl":null,"url":null,"abstract":"Early identification of safe and efficacious disease targets is crucial to alleviating the tremendous cost of drug discovery projects. However, existing experimental methods for identifying new targets are generally labor-intensive and failure-prone. On the other hand, computational approaches, especially machine learning-based frameworks, have shown remarkable application potential in drug discovery. In this work, we propose Progeni, a novel machine learning-based framework for target identification. In addition to fully exploiting the known heterogeneous biological networks from various sources, Progeni integrates literature evidence about the relations between biological entities to construct a probabilistic knowledge graph. Graph neural networks are then employed in Progeni to learn the feature embeddings of biological entities to facilitate the identification of biologically relevant target candidates. A comprehensive evaluation of Progeni demonstrated its superior predictive power over the baseline methods on the target identification task. In addition, our extensive tests showed that Progeni exhibited high robustness to the negative effect of exposure bias, a common phenomenon in recommendation systems, and effectively identified new targets that can be strongly supported by the literature. Moreover, our wet lab experiments successfully validated the biological significance of the top target candidates predicted by Progeni for melanoma and colorectal cancer. All these results suggested that Progeni can identify biologically effective targets and thus provide a powerful and useful tool for advancing the drug discovery process.","PeriodicalId":49688,"journal":{"name":"PLoS Computational Biology","volume":"47 52","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A probabilistic knowledge graph for target identification\",\"authors\":\"Chang Liu, Kaimin Xiao, Cuinan Yu, Yipin Lei, Kangbo Lyu, Tingzhong Tian, Dan Zhao, Fengfeng Zhou, Haidong Tang, Jianyang Zeng\",\"doi\":\"10.1371/journal.pcbi.1011945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early identification of safe and efficacious disease targets is crucial to alleviating the tremendous cost of drug discovery projects. However, existing experimental methods for identifying new targets are generally labor-intensive and failure-prone. On the other hand, computational approaches, especially machine learning-based frameworks, have shown remarkable application potential in drug discovery. In this work, we propose Progeni, a novel machine learning-based framework for target identification. In addition to fully exploiting the known heterogeneous biological networks from various sources, Progeni integrates literature evidence about the relations between biological entities to construct a probabilistic knowledge graph. Graph neural networks are then employed in Progeni to learn the feature embeddings of biological entities to facilitate the identification of biologically relevant target candidates. A comprehensive evaluation of Progeni demonstrated its superior predictive power over the baseline methods on the target identification task. In addition, our extensive tests showed that Progeni exhibited high robustness to the negative effect of exposure bias, a common phenomenon in recommendation systems, and effectively identified new targets that can be strongly supported by the literature. Moreover, our wet lab experiments successfully validated the biological significance of the top target candidates predicted by Progeni for melanoma and colorectal cancer. All these results suggested that Progeni can identify biologically effective targets and thus provide a powerful and useful tool for advancing the drug discovery process.\",\"PeriodicalId\":49688,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"47 52\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1011945\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011945","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A probabilistic knowledge graph for target identification
Early identification of safe and efficacious disease targets is crucial to alleviating the tremendous cost of drug discovery projects. However, existing experimental methods for identifying new targets are generally labor-intensive and failure-prone. On the other hand, computational approaches, especially machine learning-based frameworks, have shown remarkable application potential in drug discovery. In this work, we propose Progeni, a novel machine learning-based framework for target identification. In addition to fully exploiting the known heterogeneous biological networks from various sources, Progeni integrates literature evidence about the relations between biological entities to construct a probabilistic knowledge graph. Graph neural networks are then employed in Progeni to learn the feature embeddings of biological entities to facilitate the identification of biologically relevant target candidates. A comprehensive evaluation of Progeni demonstrated its superior predictive power over the baseline methods on the target identification task. In addition, our extensive tests showed that Progeni exhibited high robustness to the negative effect of exposure bias, a common phenomenon in recommendation systems, and effectively identified new targets that can be strongly supported by the literature. Moreover, our wet lab experiments successfully validated the biological significance of the top target candidates predicted by Progeni for melanoma and colorectal cancer. All these results suggested that Progeni can identify biologically effective targets and thus provide a powerful and useful tool for advancing the drug discovery process.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.