{"title":"通过生成式对抗网络实现非配对高质量图像引导的红外和可见光图像融合","authors":"Hang Li, Zheng Guan, Xue Wang, Qiuhan Shao","doi":"10.1016/j.cagd.2024.102325","DOIUrl":null,"url":null,"abstract":"<div><p>Current infrared and visible image fusion (IVIF) methods lack ground truth and require prior knowledge to guide the feature fusion process. However, in the fusion process, these features have not been placed in an equal and well-defined position, which causes the degradation of image quality. To address this challenge, this study develops a new end-to-end model, termed unpaired high-quality image-guided generative adversarial network (UHG-GAN). Specifically, we introduce the high-quality image as the reference standard of the fused image and employ a global discriminator and a local discriminator to identify the distribution difference between the high-quality image and the fused image. Through adversarial learning, the generator can generate images that are more consistent with high-quality expression. In addition, we also designed the laplacian pyramid augmentation (LPA) module in the generator, which integrates multi-scale features of source images across domains so that the generator can more fully extract the structure and texture information. Extensive experiments demonstrate that our method can effectively preserve the target information in the infrared image and the scene information in the visible image and significantly improve the image quality.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102325"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unpaired high-quality image-guided infrared and visible image fusion via generative adversarial network\",\"authors\":\"Hang Li, Zheng Guan, Xue Wang, Qiuhan Shao\",\"doi\":\"10.1016/j.cagd.2024.102325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Current infrared and visible image fusion (IVIF) methods lack ground truth and require prior knowledge to guide the feature fusion process. However, in the fusion process, these features have not been placed in an equal and well-defined position, which causes the degradation of image quality. To address this challenge, this study develops a new end-to-end model, termed unpaired high-quality image-guided generative adversarial network (UHG-GAN). Specifically, we introduce the high-quality image as the reference standard of the fused image and employ a global discriminator and a local discriminator to identify the distribution difference between the high-quality image and the fused image. Through adversarial learning, the generator can generate images that are more consistent with high-quality expression. In addition, we also designed the laplacian pyramid augmentation (LPA) module in the generator, which integrates multi-scale features of source images across domains so that the generator can more fully extract the structure and texture information. Extensive experiments demonstrate that our method can effectively preserve the target information in the infrared image and the scene information in the visible image and significantly improve the image quality.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"111 \",\"pages\":\"Article 102325\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839624000591\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624000591","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Unpaired high-quality image-guided infrared and visible image fusion via generative adversarial network
Current infrared and visible image fusion (IVIF) methods lack ground truth and require prior knowledge to guide the feature fusion process. However, in the fusion process, these features have not been placed in an equal and well-defined position, which causes the degradation of image quality. To address this challenge, this study develops a new end-to-end model, termed unpaired high-quality image-guided generative adversarial network (UHG-GAN). Specifically, we introduce the high-quality image as the reference standard of the fused image and employ a global discriminator and a local discriminator to identify the distribution difference between the high-quality image and the fused image. Through adversarial learning, the generator can generate images that are more consistent with high-quality expression. In addition, we also designed the laplacian pyramid augmentation (LPA) module in the generator, which integrates multi-scale features of source images across domains so that the generator can more fully extract the structure and texture information. Extensive experiments demonstrate that our method can effectively preserve the target information in the infrared image and the scene information in the visible image and significantly improve the image quality.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.