Zhen Zhang, Jue Tang, Mansheng Chu, Quan Shi, Chuanqiang Wang
{"title":"基于 ANSYS \"生-死元素 \"的高炉铜冷却板数值模拟和分析的挂渣能力","authors":"Zhen Zhang, Jue Tang, Mansheng Chu, Quan Shi, Chuanqiang Wang","doi":"10.1007/s40831-024-00818-1","DOIUrl":null,"url":null,"abstract":"<p>At present, there were two main problems with the cooling plate slag-hanging: One was that the research on the slag-hanging mechanism of cooling plate was not deep, and the other was that the calculation process of the slag layer thickness with cooling plate was unreasonable. Based on ANSYS ‘birth–death element,’ a slag layer iterative cycle calculation method was designed, and the change of slag layer under different boundary conditions was analyzed. The gas temperature increased from 1200 to 1600 °C, and the slag layer decreased from 56 to 8 mm. When the gas temperature was 1550 °C, the copper cooling plate would exceeded safe operating temperature (120 °C). The thermal conductivity increased from 1.2 W·m<sup>2</sup> °C<sup>−1</sup> to 2.2 W·m<sup>2</sup>·°C<sup>−1</sup>, and the slag layer was able to be thickened by 76–85%; however, the slag layer would became non-uniform. When the temperature of slag-hanging increased by 50 °C, the slag layer increased by about 6.9 mm-7.6 mm, and the uniformity of slag layer increased by 10%. The maximum temperature of cooling plate could be reduced by 5°C–10°C when the cooling water speed increased by 1 m·s<sup>−1</sup>. The cooling water temperature was reduced by 10 °C, and the maximum temperature of cooling plate and the measuring point temperature could be reduced about 10 °C. The above research and analysis provided a basis for the blast furnace to have a reasonable operating furnace type and a longer life.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"18 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slag-Hanging Capacity of Numerical Simulation and Analysis of Blast Furnace Copper Cooling Plate Based on ANSYS ‘Birth–Death Element’\",\"authors\":\"Zhen Zhang, Jue Tang, Mansheng Chu, Quan Shi, Chuanqiang Wang\",\"doi\":\"10.1007/s40831-024-00818-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>At present, there were two main problems with the cooling plate slag-hanging: One was that the research on the slag-hanging mechanism of cooling plate was not deep, and the other was that the calculation process of the slag layer thickness with cooling plate was unreasonable. Based on ANSYS ‘birth–death element,’ a slag layer iterative cycle calculation method was designed, and the change of slag layer under different boundary conditions was analyzed. The gas temperature increased from 1200 to 1600 °C, and the slag layer decreased from 56 to 8 mm. When the gas temperature was 1550 °C, the copper cooling plate would exceeded safe operating temperature (120 °C). The thermal conductivity increased from 1.2 W·m<sup>2</sup> °C<sup>−1</sup> to 2.2 W·m<sup>2</sup>·°C<sup>−1</sup>, and the slag layer was able to be thickened by 76–85%; however, the slag layer would became non-uniform. When the temperature of slag-hanging increased by 50 °C, the slag layer increased by about 6.9 mm-7.6 mm, and the uniformity of slag layer increased by 10%. The maximum temperature of cooling plate could be reduced by 5°C–10°C when the cooling water speed increased by 1 m·s<sup>−1</sup>. The cooling water temperature was reduced by 10 °C, and the maximum temperature of cooling plate and the measuring point temperature could be reduced about 10 °C. The above research and analysis provided a basis for the blast furnace to have a reasonable operating furnace type and a longer life.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-024-00818-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00818-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Slag-Hanging Capacity of Numerical Simulation and Analysis of Blast Furnace Copper Cooling Plate Based on ANSYS ‘Birth–Death Element’
At present, there were two main problems with the cooling plate slag-hanging: One was that the research on the slag-hanging mechanism of cooling plate was not deep, and the other was that the calculation process of the slag layer thickness with cooling plate was unreasonable. Based on ANSYS ‘birth–death element,’ a slag layer iterative cycle calculation method was designed, and the change of slag layer under different boundary conditions was analyzed. The gas temperature increased from 1200 to 1600 °C, and the slag layer decreased from 56 to 8 mm. When the gas temperature was 1550 °C, the copper cooling plate would exceeded safe operating temperature (120 °C). The thermal conductivity increased from 1.2 W·m2 °C−1 to 2.2 W·m2·°C−1, and the slag layer was able to be thickened by 76–85%; however, the slag layer would became non-uniform. When the temperature of slag-hanging increased by 50 °C, the slag layer increased by about 6.9 mm-7.6 mm, and the uniformity of slag layer increased by 10%. The maximum temperature of cooling plate could be reduced by 5°C–10°C when the cooling water speed increased by 1 m·s−1. The cooling water temperature was reduced by 10 °C, and the maximum temperature of cooling plate and the measuring point temperature could be reduced about 10 °C. The above research and analysis provided a basis for the blast furnace to have a reasonable operating furnace type and a longer life.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.