NC 库:为嵌套式可重构硬件建模扩展 SystemC 功能

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Reconfigurable Technology and Systems Pub Date : 2024-04-27 DOI:10.1145/3662001
Julian Haase, Najdet Charaf, Alexander Groß, Diana Göhringer
{"title":"NC 库:为嵌套式可重构硬件建模扩展 SystemC 功能","authors":"Julian Haase, Najdet Charaf, Alexander Groß, Diana Göhringer","doi":"10.1145/3662001","DOIUrl":null,"url":null,"abstract":"<p>As runtime reconfiguration is used in an increasing number of hardware architectures, new simulation and modeling tools are needed to support the developer during the design phases. In this article, a language extension for SystemC is presented, together with a design methodology for the description and simulation of dynamically reconfigurable hardware at different levels of abstraction. The library presented offers a high degree of flexibility in the description of reconfiguration features and their management, while allowing runtime reconfiguration simulation, removal, and replacement of custom modules as well as third-party components throughout the architecture development process. In addition, our approach supports the emerging concept of nested reconfiguration and split regions with a minimal simulation overhead of a maximum of three delta cycles for signal and transaction forwarding, and four delta cycles for the reconfiguration process.</p>","PeriodicalId":49248,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems","volume":"157 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NC-Library: Expanding SystemC Capabilities for Nested reConfigurable Hardware Modelling\",\"authors\":\"Julian Haase, Najdet Charaf, Alexander Groß, Diana Göhringer\",\"doi\":\"10.1145/3662001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As runtime reconfiguration is used in an increasing number of hardware architectures, new simulation and modeling tools are needed to support the developer during the design phases. In this article, a language extension for SystemC is presented, together with a design methodology for the description and simulation of dynamically reconfigurable hardware at different levels of abstraction. The library presented offers a high degree of flexibility in the description of reconfiguration features and their management, while allowing runtime reconfiguration simulation, removal, and replacement of custom modules as well as third-party components throughout the architecture development process. In addition, our approach supports the emerging concept of nested reconfiguration and split regions with a minimal simulation overhead of a maximum of three delta cycles for signal and transaction forwarding, and four delta cycles for the reconfiguration process.</p>\",\"PeriodicalId\":49248,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"volume\":\"157 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3662001\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3662001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

随着运行时重新配置技术在越来越多的硬件架构中得到应用,需要新的仿真和建模工具在设计阶段为开发人员提供支持。本文介绍了 SystemC 语言的扩展,以及在不同抽象层次上描述和模拟动态可重构硬件的设计方法。所介绍的库在描述重配置功能及其管理方面具有高度灵活性,同时允许在整个架构开发过程中进行运行时重配置仿真、移除和替换定制模块以及第三方组件。此外,我们的方法还支持嵌套重新配置和分割区域的新兴概念,并将信号和事务转发的模拟开销降至最低,最多不超过三个三角洲周期,重新配置过程不超过四个三角洲周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NC-Library: Expanding SystemC Capabilities for Nested reConfigurable Hardware Modelling

As runtime reconfiguration is used in an increasing number of hardware architectures, new simulation and modeling tools are needed to support the developer during the design phases. In this article, a language extension for SystemC is presented, together with a design methodology for the description and simulation of dynamically reconfigurable hardware at different levels of abstraction. The library presented offers a high degree of flexibility in the description of reconfiguration features and their management, while allowing runtime reconfiguration simulation, removal, and replacement of custom modules as well as third-party components throughout the architecture development process. In addition, our approach supports the emerging concept of nested reconfiguration and split regions with a minimal simulation overhead of a maximum of three delta cycles for signal and transaction forwarding, and four delta cycles for the reconfiguration process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Reconfigurable Technology and Systems
ACM Transactions on Reconfigurable Technology and Systems COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.90
自引率
8.70%
发文量
79
审稿时长
>12 weeks
期刊介绍: TRETS is the top journal focusing on research in, on, and with reconfigurable systems and on their underlying technology. The scope, rationale, and coverage by other journals are often limited to particular aspects of reconfigurable technology or reconfigurable systems. TRETS is a journal that covers reconfigurability in its own right. Topics that would be appropriate for TRETS would include all levels of reconfigurable system abstractions and all aspects of reconfigurable technology including platforms, programming environments and application successes that support these systems for computing or other applications. -The board and systems architectures of a reconfigurable platform. -Programming environments of reconfigurable systems, especially those designed for use with reconfigurable systems that will lead to increased programmer productivity. -Languages and compilers for reconfigurable systems. -Logic synthesis and related tools, as they relate to reconfigurable systems. -Applications on which success can be demonstrated. The underlying technology from which reconfigurable systems are developed. (Currently this technology is that of FPGAs, but research on the nature and use of follow-on technologies is appropriate for TRETS.) In considering whether a paper is suitable for TRETS, the foremost question should be whether reconfigurability has been essential to success. Topics such as architecture, programming languages, compilers, and environments, logic synthesis, and high performance applications are all suitable if the context is appropriate. For example, an architecture for an embedded application that happens to use FPGAs is not necessarily suitable for TRETS, but an architecture using FPGAs for which the reconfigurability of the FPGAs is an inherent part of the specifications (perhaps due to a need for re-use on multiple applications) would be appropriate for TRETS.
期刊最新文献
End-to-end codesign of Hessian-aware quantized neural networks for FPGAs DyRecMul: Fast and Low-Cost Approximate Multiplier for FPGAs using Dynamic Reconfiguration Dynamic-ACTS - A Dynamic Graph Analytics Accelerator For HBM-Enabled FPGAs NC-Library: Expanding SystemC Capabilities for Nested reConfigurable Hardware Modelling PQA: Exploring the Potential of Product Quantization in DNN Hardware Acceleration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1