{"title":"利用喷雾化学气相沉积法提高蓝宝石基底上生长的面向 a 的 α-Ga2O3 薄膜的光导率","authors":"Kazuyuki Uno, Keishi Yamaoka","doi":"10.1002/pssb.202300463","DOIUrl":null,"url":null,"abstract":"<jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> is a suitable material for UV‐C optical devices owing to its optical absorption edge wavelength. In this study, <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films are grown on c‐, a‐, m‐, n‐, and r‐oriented sapphire substrates by mist chemical vapor deposition. Furthermore, their structural fluctuations, (normal direction of the surface) and (rotational direction on the surface), are examined. As a result, the a‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films exhibit the smallest and . Based on the results of the previous examination, metal–semiconductor–metal (MSM) photodetectors are fabricated using c‐ and a‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films and their photoconducting properties are characterized. Under D<jats:sub>2</jats:sub> lamp light illumination, the MSM photodetector using a‐oriented films produces photocurrent four to six times greater than those using c‐oriented films. The visible‐light rejection ratios are at 10 V and 10<jats:sup>5.2</jats:sup> at 24 V. The photoresponsivity is estimated to be 2.2 A W<jats:sup>−1</jats:sup> under the illumination of a D<jats:sub>2</jats:sub> UV lamp and 24 V bias voltage. In these results, it is suggested that the a‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin film exhibits a higher in‐plane carrier mobility than the c‐oriented film. Thus, a‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> films are more suitable than c‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> films for fabricating MSM photodetectors.","PeriodicalId":20406,"journal":{"name":"Physica Status Solidi B-basic Solid State Physics","volume":"55 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of Photoconductivity in a‐Oriented α‐Ga2O3 Thin Films Grown on Sapphire Substrates by Mist Chemical Vapor Deposition\",\"authors\":\"Kazuyuki Uno, Keishi Yamaoka\",\"doi\":\"10.1002/pssb.202300463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> is a suitable material for UV‐C optical devices owing to its optical absorption edge wavelength. In this study, <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films are grown on c‐, a‐, m‐, n‐, and r‐oriented sapphire substrates by mist chemical vapor deposition. Furthermore, their structural fluctuations, (normal direction of the surface) and (rotational direction on the surface), are examined. As a result, the a‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films exhibit the smallest and . Based on the results of the previous examination, metal–semiconductor–metal (MSM) photodetectors are fabricated using c‐ and a‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin films and their photoconducting properties are characterized. Under D<jats:sub>2</jats:sub> lamp light illumination, the MSM photodetector using a‐oriented films produces photocurrent four to six times greater than those using c‐oriented films. The visible‐light rejection ratios are at 10 V and 10<jats:sup>5.2</jats:sup> at 24 V. The photoresponsivity is estimated to be 2.2 A W<jats:sup>−1</jats:sup> under the illumination of a D<jats:sub>2</jats:sub> UV lamp and 24 V bias voltage. In these results, it is suggested that the a‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thin film exhibits a higher in‐plane carrier mobility than the c‐oriented film. Thus, a‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> films are more suitable than c‐oriented <jats:italic>α</jats:italic>‐Ga<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> films for fabricating MSM photodetectors.\",\"PeriodicalId\":20406,\"journal\":{\"name\":\"Physica Status Solidi B-basic Solid State Physics\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi B-basic Solid State Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/pssb.202300463\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi B-basic Solid State Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssb.202300463","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
α-Ga2O3具有光吸收边缘波长,是紫外-C光学器件的理想材料。本研究采用雾化化学气相沉积法在 c、a、m、n 和 r 向蓝宝石基底上生长了 α-Ga2O3 薄膜。此外,还研究了它们的结构波动(表面法线方向)和(表面旋转方向)。结果表明,a 方向的 α-Ga2O3 薄膜表现出最小的结构波动,而 r 方向的 α-Ga2O3 薄膜表现出最小的结构波动。根据之前的研究结果,利用 c 向和 a 向 α-Ga2O3 薄膜制作了金属-半导体-金属(MSM)光电探测器,并对其光导特性进行了表征。在 D2 灯照射下,使用 a 向薄膜的 MSM 光电探测器产生的光电流是使用 c 向薄膜的 MSM 光电探测器的四至六倍。在 D2 紫外灯和 24 V 偏置电压的照射下,光致发射率估计为 2.2 A W-1。这些结果表明,a 向 α-Ga2O3 薄膜比 c 向薄膜具有更高的面内载流子迁移率。因此,a 向 α-Ga2O3 薄膜比 c 向 α-Ga2O3 薄膜更适合用于制造 MSM 光电探测器。
Improvement of Photoconductivity in a‐Oriented α‐Ga2O3 Thin Films Grown on Sapphire Substrates by Mist Chemical Vapor Deposition
α‐Ga2O3 is a suitable material for UV‐C optical devices owing to its optical absorption edge wavelength. In this study, α‐Ga2O3 thin films are grown on c‐, a‐, m‐, n‐, and r‐oriented sapphire substrates by mist chemical vapor deposition. Furthermore, their structural fluctuations, (normal direction of the surface) and (rotational direction on the surface), are examined. As a result, the a‐oriented α‐Ga2O3 thin films exhibit the smallest and . Based on the results of the previous examination, metal–semiconductor–metal (MSM) photodetectors are fabricated using c‐ and a‐oriented α‐Ga2O3 thin films and their photoconducting properties are characterized. Under D2 lamp light illumination, the MSM photodetector using a‐oriented films produces photocurrent four to six times greater than those using c‐oriented films. The visible‐light rejection ratios are at 10 V and 105.2 at 24 V. The photoresponsivity is estimated to be 2.2 A W−1 under the illumination of a D2 UV lamp and 24 V bias voltage. In these results, it is suggested that the a‐oriented α‐Ga2O3 thin film exhibits a higher in‐plane carrier mobility than the c‐oriented film. Thus, a‐oriented α‐Ga2O3 films are more suitable than c‐oriented α‐Ga2O3 films for fabricating MSM photodetectors.
期刊介绍:
physica status solidi is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Being among the largest and most important international publications, the pss journals publish review articles, letters and original work as well as special issues and conference contributions.
physica status solidi b – basic solid state physics is devoted to topics such as theoretical and experimental investigations of the atomistic and electronic structure of solids in general, phase transitions, electronic and optical properties of low-dimensional, nano-scale, strongly correlated, or disordered systems, superconductivity, magnetism, ferroelectricity etc.