S. M. Bosnyakov, A. V. Wolkov, S. V. Mikhaylov, V. Yu. Podaruev
{"title":"计算民用飞机结构部件初始结冰阶段的高阶精确度方法","authors":"S. M. Bosnyakov, A. V. Wolkov, S. V. Mikhaylov, V. Yu. Podaruev","doi":"10.1134/s207004822401006x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>An effective approach based on the discontinuous Galerkin method (DGM) of a high-order accuracy for calculating the initial stage of an aircraft wing’s icing is presented. The problem is solved in the Euler approximation for small water droplets that do not affect the main flow. Systems of Navier–Stokes (NS) equations and Euler model equations for the liquid water content and some relations of the ice growth thermodynamics equations are written. The initial and boundary conditions are formulated. A supercomputer DGM implementation is proposed to solve these systems of equations. The efficiency of the parallel version for the code is investigated. Comments are given on the peculiarities of organizing the calculation procedure. The accuracy of the calculation using the DGM schemes of different accuracy orders is investigated. Test cases on the finely dispersed flow of supercooled droplets around a cylinder and a NACA0012 profile are presented. The numerical and experimental data are compared. A conclusion is drawn about the possibility of applying the developed methodology in practice.</p>","PeriodicalId":38050,"journal":{"name":"Mathematical Models and Computer Simulations","volume":"163 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High-Order Accuracy Method for Calculating the Initial Icing Stage of a Civil Aircraft’s Structural Elements\",\"authors\":\"S. M. Bosnyakov, A. V. Wolkov, S. V. Mikhaylov, V. Yu. Podaruev\",\"doi\":\"10.1134/s207004822401006x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>An effective approach based on the discontinuous Galerkin method (DGM) of a high-order accuracy for calculating the initial stage of an aircraft wing’s icing is presented. The problem is solved in the Euler approximation for small water droplets that do not affect the main flow. Systems of Navier–Stokes (NS) equations and Euler model equations for the liquid water content and some relations of the ice growth thermodynamics equations are written. The initial and boundary conditions are formulated. A supercomputer DGM implementation is proposed to solve these systems of equations. The efficiency of the parallel version for the code is investigated. Comments are given on the peculiarities of organizing the calculation procedure. The accuracy of the calculation using the DGM schemes of different accuracy orders is investigated. Test cases on the finely dispersed flow of supercooled droplets around a cylinder and a NACA0012 profile are presented. The numerical and experimental data are compared. A conclusion is drawn about the possibility of applying the developed methodology in practice.</p>\",\"PeriodicalId\":38050,\"journal\":{\"name\":\"Mathematical Models and Computer Simulations\",\"volume\":\"163 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Computer Simulations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s207004822401006x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Computer Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s207004822401006x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
A High-Order Accuracy Method for Calculating the Initial Icing Stage of a Civil Aircraft’s Structural Elements
Abstract
An effective approach based on the discontinuous Galerkin method (DGM) of a high-order accuracy for calculating the initial stage of an aircraft wing’s icing is presented. The problem is solved in the Euler approximation for small water droplets that do not affect the main flow. Systems of Navier–Stokes (NS) equations and Euler model equations for the liquid water content and some relations of the ice growth thermodynamics equations are written. The initial and boundary conditions are formulated. A supercomputer DGM implementation is proposed to solve these systems of equations. The efficiency of the parallel version for the code is investigated. Comments are given on the peculiarities of organizing the calculation procedure. The accuracy of the calculation using the DGM schemes of different accuracy orders is investigated. Test cases on the finely dispersed flow of supercooled droplets around a cylinder and a NACA0012 profile are presented. The numerical and experimental data are compared. A conclusion is drawn about the possibility of applying the developed methodology in practice.
期刊介绍:
Mathematical Models and Computer Simulations is a journal that publishes high-quality and original articles at the forefront of development of mathematical models, numerical methods, computer-assisted studies in science and engineering with the potential for impact across the sciences, and construction of massively parallel codes for supercomputers. The problem-oriented papers are devoted to various problems including industrial mathematics, numerical simulation in multiscale and multiphysics, materials science, chemistry, economics, social, and life sciences.