Resmi M, Elaganuru Bashaiah and Ramachandrarao Yalla
{"title":"将量子点的荧光光子导入纳米光纤尖端的引导模式","authors":"Resmi M, Elaganuru Bashaiah and Ramachandrarao Yalla","doi":"10.1088/2040-8986/ad3ccb","DOIUrl":null,"url":null,"abstract":"We demonstrate the channeling of fluorescence photons from quantum dots (QDs) into guided modes of an optical nanofiber tip (ONFT). We deposit QDs on the ONFT using micro/nano fluidic technology. We measure the photon-counting and emission spectrum of fluorescence photons that are channeled into guided modes of the ONFT. The measured emission spectrum confirms the deposition of QDs on the ONFT. We perform numerical simulations to determine channeling efficiency (η) for the ONFT and a single dipole source (SDS) system. For the radially oriented SDS at the center of the facet of the ONFT, we found the maximum η-value of 44% at the fiber size parameter of 7.16, corresponding to the ONFT radius of 0.71 µm for the emission wavelength at 620 nm. Additionally, we investigate the SDS position dependence in transverse directions on the facet of the ONFT in view of keeping experimental ambiguities. The present fiber inline platform may open new avenues in quantum technologies.","PeriodicalId":16775,"journal":{"name":"Journal of Optics","volume":"48 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channeling of fluorescence photons from quantum dots into guided modes of an optical nanofiber tip\",\"authors\":\"Resmi M, Elaganuru Bashaiah and Ramachandrarao Yalla\",\"doi\":\"10.1088/2040-8986/ad3ccb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate the channeling of fluorescence photons from quantum dots (QDs) into guided modes of an optical nanofiber tip (ONFT). We deposit QDs on the ONFT using micro/nano fluidic technology. We measure the photon-counting and emission spectrum of fluorescence photons that are channeled into guided modes of the ONFT. The measured emission spectrum confirms the deposition of QDs on the ONFT. We perform numerical simulations to determine channeling efficiency (η) for the ONFT and a single dipole source (SDS) system. For the radially oriented SDS at the center of the facet of the ONFT, we found the maximum η-value of 44% at the fiber size parameter of 7.16, corresponding to the ONFT radius of 0.71 µm for the emission wavelength at 620 nm. Additionally, we investigate the SDS position dependence in transverse directions on the facet of the ONFT in view of keeping experimental ambiguities. The present fiber inline platform may open new avenues in quantum technologies.\",\"PeriodicalId\":16775,\"journal\":{\"name\":\"Journal of Optics\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2040-8986/ad3ccb\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2040-8986/ad3ccb","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Channeling of fluorescence photons from quantum dots into guided modes of an optical nanofiber tip
We demonstrate the channeling of fluorescence photons from quantum dots (QDs) into guided modes of an optical nanofiber tip (ONFT). We deposit QDs on the ONFT using micro/nano fluidic technology. We measure the photon-counting and emission spectrum of fluorescence photons that are channeled into guided modes of the ONFT. The measured emission spectrum confirms the deposition of QDs on the ONFT. We perform numerical simulations to determine channeling efficiency (η) for the ONFT and a single dipole source (SDS) system. For the radially oriented SDS at the center of the facet of the ONFT, we found the maximum η-value of 44% at the fiber size parameter of 7.16, corresponding to the ONFT radius of 0.71 µm for the emission wavelength at 620 nm. Additionally, we investigate the SDS position dependence in transverse directions on the facet of the ONFT in view of keeping experimental ambiguities. The present fiber inline platform may open new avenues in quantum technologies.
期刊介绍:
Journal of Optics publishes new experimental and theoretical research across all areas of pure and applied optics, both modern and classical. Research areas are categorised as:
Nanophotonics and plasmonics
Metamaterials and structured photonic materials
Quantum photonics
Biophotonics
Light-matter interactions
Nonlinear and ultrafast optics
Propagation, diffraction and scattering
Optical communication
Integrated optics
Photovoltaics and energy harvesting
We discourage incremental advances, purely numerical simulations without any validation, or research without a strong optics advance, e.g. computer algorithms applied to optical and imaging processes, equipment designs or material fabrication.