DensePANet:从稀疏数据重建光声断层图像的改进生成对抗网络

Hesam Hakimnejad, Zohreh Azimifar, Narjes Goshtasbi
{"title":"DensePANet:从稀疏数据重建光声断层图像的改进生成对抗网络","authors":"Hesam Hakimnejad, Zohreh Azimifar, Narjes Goshtasbi","doi":"arxiv-2404.13101","DOIUrl":null,"url":null,"abstract":"Image reconstruction is an essential step of every medical imaging method,\nincluding Photoacoustic Tomography (PAT), which is a promising modality of\nimaging, that unites the benefits of both ultrasound and optical imaging\nmethods. Reconstruction of PAT images using conventional methods results in\nrough artifacts, especially when applied directly to sparse PAT data. In recent\nyears, generative adversarial networks (GANs) have shown a powerful performance\nin image generation as well as translation, rendering them a smart choice to be\napplied to reconstruction tasks. In this study, we proposed an end-to-end\nmethod called DensePANet to solve the problem of PAT image reconstruction from\nsparse data. The proposed model employs a novel modification of UNet in its\ngenerator, called FD-UNet++, which considerably improves the reconstruction\nperformance. We evaluated the method on various in-vivo and simulated datasets.\nQuantitative and qualitative results show the better performance of our model\nover other prevalent deep learning techniques.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":"121 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DensePANet: An improved generative adversarial network for photoacoustic tomography image reconstruction from sparse data\",\"authors\":\"Hesam Hakimnejad, Zohreh Azimifar, Narjes Goshtasbi\",\"doi\":\"arxiv-2404.13101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image reconstruction is an essential step of every medical imaging method,\\nincluding Photoacoustic Tomography (PAT), which is a promising modality of\\nimaging, that unites the benefits of both ultrasound and optical imaging\\nmethods. Reconstruction of PAT images using conventional methods results in\\nrough artifacts, especially when applied directly to sparse PAT data. In recent\\nyears, generative adversarial networks (GANs) have shown a powerful performance\\nin image generation as well as translation, rendering them a smart choice to be\\napplied to reconstruction tasks. In this study, we proposed an end-to-end\\nmethod called DensePANet to solve the problem of PAT image reconstruction from\\nsparse data. The proposed model employs a novel modification of UNet in its\\ngenerator, called FD-UNet++, which considerably improves the reconstruction\\nperformance. We evaluated the method on various in-vivo and simulated datasets.\\nQuantitative and qualitative results show the better performance of our model\\nover other prevalent deep learning techniques.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.13101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.13101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像重建是每种医学成像方法的基本步骤,包括光声断层扫描(PAT),它是一种很有前途的成像模式,融合了超声和光学成像方法的优点。使用传统方法重建 PAT 图像会产生伪影,尤其是直接应用于稀疏的 PAT 数据时。近年来,生成式对抗网络(GANs)在图像生成和翻译方面表现出了强大的性能,使其成为应用于重建任务的明智选择。在这项研究中,我们提出了一种名为 DensePANet 的端到端方法,用于解决从稀疏数据重建 PAT 图像的问题。所提出的模型在其生成器中采用了一种名为 FD-UNet++ 的对 UNet 的新型修改,从而大大提高了重建性能。我们在各种体内和模拟数据集上对该方法进行了评估。定量和定性结果表明,我们的模型比其他流行的深度学习技术性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DensePANet: An improved generative adversarial network for photoacoustic tomography image reconstruction from sparse data
Image reconstruction is an essential step of every medical imaging method, including Photoacoustic Tomography (PAT), which is a promising modality of imaging, that unites the benefits of both ultrasound and optical imaging methods. Reconstruction of PAT images using conventional methods results in rough artifacts, especially when applied directly to sparse PAT data. In recent years, generative adversarial networks (GANs) have shown a powerful performance in image generation as well as translation, rendering them a smart choice to be applied to reconstruction tasks. In this study, we proposed an end-to-end method called DensePANet to solve the problem of PAT image reconstruction from sparse data. The proposed model employs a novel modification of UNet in its generator, called FD-UNet++, which considerably improves the reconstruction performance. We evaluated the method on various in-vivo and simulated datasets. Quantitative and qualitative results show the better performance of our model over other prevalent deep learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1