{"title":"岩石圈的大尺度长期强度:新理论与应用","authors":"Taras Gerya","doi":"10.1134/S086959112401003X","DOIUrl":null,"url":null,"abstract":"<p>Long-term strength of the lithosphere is often assumed to be equivalent to its average deviatoric stress level. However, this definition is only correct for a homogeneous visco-elastic material, in which no localized (in space and/or time) weakening and deformation processes occur. Here, I instead propose to define the large-scale-long-term strength of the lithosphere as the measure of its mechanical resistance to irreversible deformation, which corresponds to the amount of mechanical energy irreversibly spent (i.e., dissipated) for producing unit irreversible (i.e., inelastic, visco-plastic) deformation. According to this new definition, strength is the ratio of the integrated (through given lithospheric volume and time) mechanical energy dissipation to the integrated irreversible visco-plastic strain. With this new definition, the large-scale-long-term strength of the lithosphere stands as a strain-averaged rather than a volume-time-averaged quantity. As the result, an interesting behavior can occur when, due to localization of irreversible deformation along volumetrically minor weak structures, strength of the lithosphere can be significantly lower than its average long-term deviatoric stress level characteristic for volumetrically dominant strong elastic regions. This definition is applicable for both homogeneous and heterogeneous (i.e., localized in space and/or time) lithospheric deformation and provides a useful framework for analyzing various geodynamic settings on regional and global scale. In particular, I show some implications of this new lithospheric strength theory for better understanding of (i) intense melt-induced weakening of the lithosphere by magmatic processes, (ii) very low strength of plate interface in subduction zones and (iii) low brittle/plastic strength of tectonic plates predicted by global mantle convection models with plate tectonics. Although this work focuses on evaluating the long-term-large-scale brittle/plastic strength and deformation parameters, the proposed approach can also be applied for quantifying the effective ductile (i.e., viscous) strength and respective long-term-large-scale rheological properties.</p>","PeriodicalId":20026,"journal":{"name":"Petrology","volume":"32 1","pages":"128 - 141"},"PeriodicalIF":1.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale-long-term Strength of the Lithosphere: New Theory and Applications\",\"authors\":\"Taras Gerya\",\"doi\":\"10.1134/S086959112401003X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Long-term strength of the lithosphere is often assumed to be equivalent to its average deviatoric stress level. However, this definition is only correct for a homogeneous visco-elastic material, in which no localized (in space and/or time) weakening and deformation processes occur. Here, I instead propose to define the large-scale-long-term strength of the lithosphere as the measure of its mechanical resistance to irreversible deformation, which corresponds to the amount of mechanical energy irreversibly spent (i.e., dissipated) for producing unit irreversible (i.e., inelastic, visco-plastic) deformation. According to this new definition, strength is the ratio of the integrated (through given lithospheric volume and time) mechanical energy dissipation to the integrated irreversible visco-plastic strain. With this new definition, the large-scale-long-term strength of the lithosphere stands as a strain-averaged rather than a volume-time-averaged quantity. As the result, an interesting behavior can occur when, due to localization of irreversible deformation along volumetrically minor weak structures, strength of the lithosphere can be significantly lower than its average long-term deviatoric stress level characteristic for volumetrically dominant strong elastic regions. This definition is applicable for both homogeneous and heterogeneous (i.e., localized in space and/or time) lithospheric deformation and provides a useful framework for analyzing various geodynamic settings on regional and global scale. In particular, I show some implications of this new lithospheric strength theory for better understanding of (i) intense melt-induced weakening of the lithosphere by magmatic processes, (ii) very low strength of plate interface in subduction zones and (iii) low brittle/plastic strength of tectonic plates predicted by global mantle convection models with plate tectonics. Although this work focuses on evaluating the long-term-large-scale brittle/plastic strength and deformation parameters, the proposed approach can also be applied for quantifying the effective ductile (i.e., viscous) strength and respective long-term-large-scale rheological properties.</p>\",\"PeriodicalId\":20026,\"journal\":{\"name\":\"Petrology\",\"volume\":\"32 1\",\"pages\":\"128 - 141\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S086959112401003X\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S086959112401003X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Large-scale-long-term Strength of the Lithosphere: New Theory and Applications
Long-term strength of the lithosphere is often assumed to be equivalent to its average deviatoric stress level. However, this definition is only correct for a homogeneous visco-elastic material, in which no localized (in space and/or time) weakening and deformation processes occur. Here, I instead propose to define the large-scale-long-term strength of the lithosphere as the measure of its mechanical resistance to irreversible deformation, which corresponds to the amount of mechanical energy irreversibly spent (i.e., dissipated) for producing unit irreversible (i.e., inelastic, visco-plastic) deformation. According to this new definition, strength is the ratio of the integrated (through given lithospheric volume and time) mechanical energy dissipation to the integrated irreversible visco-plastic strain. With this new definition, the large-scale-long-term strength of the lithosphere stands as a strain-averaged rather than a volume-time-averaged quantity. As the result, an interesting behavior can occur when, due to localization of irreversible deformation along volumetrically minor weak structures, strength of the lithosphere can be significantly lower than its average long-term deviatoric stress level characteristic for volumetrically dominant strong elastic regions. This definition is applicable for both homogeneous and heterogeneous (i.e., localized in space and/or time) lithospheric deformation and provides a useful framework for analyzing various geodynamic settings on regional and global scale. In particular, I show some implications of this new lithospheric strength theory for better understanding of (i) intense melt-induced weakening of the lithosphere by magmatic processes, (ii) very low strength of plate interface in subduction zones and (iii) low brittle/plastic strength of tectonic plates predicted by global mantle convection models with plate tectonics. Although this work focuses on evaluating the long-term-large-scale brittle/plastic strength and deformation parameters, the proposed approach can also be applied for quantifying the effective ductile (i.e., viscous) strength and respective long-term-large-scale rheological properties.
期刊介绍:
Petrology is a journal of magmatic, metamorphic, and experimental petrology, mineralogy, and geochemistry. The journal offers comprehensive information on all multidisciplinary aspects of theoretical, experimental, and applied petrology. By giving special consideration to studies on the petrography of different regions of the former Soviet Union, Petrology provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.