Andreas Lange, Ivica Medugorac, Asghar Ali, Barbara Kessler, Mayuko Kurome, Valeri Zakhartchenko, Sabine E. Hammer, Andreas Hauser, Joachim Denner, Britta Dobenecker, Gerhard Wess, Paul L. J. Tan, Olga Garkavenko, Bruno Reichart, Eckhard Wolf, Elisabeth Kemter
{"title":"奥克兰岛猪的遗传多样性、生长和心脏功能--器官异种移植的潜在来源","authors":"Andreas Lange, Ivica Medugorac, Asghar Ali, Barbara Kessler, Mayuko Kurome, Valeri Zakhartchenko, Sabine E. Hammer, Andreas Hauser, Joachim Denner, Britta Dobenecker, Gerhard Wess, Paul L. J. Tan, Olga Garkavenko, Bruno Reichart, Eckhard Wolf, Elisabeth Kemter","doi":"10.1111/xen.12858","DOIUrl":null,"url":null,"abstract":"One of the prerequisites for successful organ xenotransplantation is a reasonable size match between the porcine organ and the recipient's organ to be replaced. Therefore, the selection of a suitable genetic background of source pigs is important. In this study, we investigated body and organ growth, cardiac function, and genetic diversity of a colony of Auckland Island pigs established at the Center for Innovative Medical Models (CiMM), LMU Munich. Male and female Auckland Island pig kidney cells (selected to be free of porcine endogenous retrovirus C) were imported from New Zealand, and founder animals were established by somatic cell nuclear transfer (SCNT). Morphologically, Auckland Island pigs have smaller body stature compared to many domestic pig breeds, rendering their organ dimensions well‐suited for human transplantation. Furthermore, echocardiography assessments of Auckland Island pig hearts indicated normal structure and functioning across various age groups throughout the study. Single nucleotide polymorphism (SNP) analysis revealed higher runs of homozygosity (ROH) in Auckland Island pigs compared to other domestic pig breeds and demonstrated that the entire locus coding the swine leukocyte antigens (SLAs) was homozygous. Based on these findings, Auckland Island pigs represent a promising genetic background for organ xenotransplantation.","PeriodicalId":23866,"journal":{"name":"Xenotransplantation","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic diversity, growth and heart function of Auckland Island pigs, a potential source for organ xenotransplantation\",\"authors\":\"Andreas Lange, Ivica Medugorac, Asghar Ali, Barbara Kessler, Mayuko Kurome, Valeri Zakhartchenko, Sabine E. Hammer, Andreas Hauser, Joachim Denner, Britta Dobenecker, Gerhard Wess, Paul L. J. Tan, Olga Garkavenko, Bruno Reichart, Eckhard Wolf, Elisabeth Kemter\",\"doi\":\"10.1111/xen.12858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the prerequisites for successful organ xenotransplantation is a reasonable size match between the porcine organ and the recipient's organ to be replaced. Therefore, the selection of a suitable genetic background of source pigs is important. In this study, we investigated body and organ growth, cardiac function, and genetic diversity of a colony of Auckland Island pigs established at the Center for Innovative Medical Models (CiMM), LMU Munich. Male and female Auckland Island pig kidney cells (selected to be free of porcine endogenous retrovirus C) were imported from New Zealand, and founder animals were established by somatic cell nuclear transfer (SCNT). Morphologically, Auckland Island pigs have smaller body stature compared to many domestic pig breeds, rendering their organ dimensions well‐suited for human transplantation. Furthermore, echocardiography assessments of Auckland Island pig hearts indicated normal structure and functioning across various age groups throughout the study. Single nucleotide polymorphism (SNP) analysis revealed higher runs of homozygosity (ROH) in Auckland Island pigs compared to other domestic pig breeds and demonstrated that the entire locus coding the swine leukocyte antigens (SLAs) was homozygous. Based on these findings, Auckland Island pigs represent a promising genetic background for organ xenotransplantation.\",\"PeriodicalId\":23866,\"journal\":{\"name\":\"Xenotransplantation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Xenotransplantation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/xen.12858\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenotransplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/xen.12858","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Genetic diversity, growth and heart function of Auckland Island pigs, a potential source for organ xenotransplantation
One of the prerequisites for successful organ xenotransplantation is a reasonable size match between the porcine organ and the recipient's organ to be replaced. Therefore, the selection of a suitable genetic background of source pigs is important. In this study, we investigated body and organ growth, cardiac function, and genetic diversity of a colony of Auckland Island pigs established at the Center for Innovative Medical Models (CiMM), LMU Munich. Male and female Auckland Island pig kidney cells (selected to be free of porcine endogenous retrovirus C) were imported from New Zealand, and founder animals were established by somatic cell nuclear transfer (SCNT). Morphologically, Auckland Island pigs have smaller body stature compared to many domestic pig breeds, rendering their organ dimensions well‐suited for human transplantation. Furthermore, echocardiography assessments of Auckland Island pig hearts indicated normal structure and functioning across various age groups throughout the study. Single nucleotide polymorphism (SNP) analysis revealed higher runs of homozygosity (ROH) in Auckland Island pigs compared to other domestic pig breeds and demonstrated that the entire locus coding the swine leukocyte antigens (SLAs) was homozygous. Based on these findings, Auckland Island pigs represent a promising genetic background for organ xenotransplantation.
期刊介绍:
Xenotransplantation provides its readership with rapid communication of new findings in the field of organ and tissue transplantation across species barriers.The journal is not only of interest to those whose primary area is xenotransplantation, but also to veterinarians, microbiologists and geneticists. It also investigates and reports on the controversial theological, ethical, legal and psychological implications of xenotransplantation.