{"title":"利用考虑气象和气候信息的输入输出双分解数据驱动模型加强月度流量预测","authors":"Qiucen Guo, Xuehua Zhao, Yuhang Zhao, Zhijing Ren, Huifang Wang, Wenjun Cai","doi":"10.1007/s00477-024-02731-1","DOIUrl":null,"url":null,"abstract":"<p>Accurate streamflow prediction is significant for water resources management. However, due to the impact of climate change and human activities, accurately identifying the input factors of the streamflow prediction model and achieving high-precision results presents a significant challenge. In this study, past streamflow, meteorological, and climate factors were utilized as inputs to develop a predictive scenario for the bi-decomposition of input factors and streamflow series, i.e. Scenario 3 (S3). Mutual information (MI) was applied to recognize the input factors prediction potential. Based on the predictive potentials, factors were progressively incorporated into the kernel extreme learning machine (KELM) and hybrid kernel extreme learning machine (HKELM) models optimized by the gazelle optimization algorithm (GOA) to ascertain the optimal input configuration for each sub-series. The prediction results of S3-KELM and S3-HKELM models were obtained by reconstructing the optimal prediction results of each sub-series. The monthly streamflow of the upper Fenhe River Basin, which is in the semi-humid and semi-arid climate zone, was selected as a case study. The results indicate that in comparison to both undecomposed and singly decomposed scenarios, the input–output bi-decomposed scenario more accurately identifies the input factors and constructs high-precision prediction models. The Nash–Sutcliffe efficiency (NSE) of both the S3-KELM and S3-HKELM models exceeds 0.85. Specifically, the S3-HKELM model demonstrates superior performance, capable of handling more complex inputs, with its NSE reaching up to 0.93. Importantly, meteorological and climate factors contribute to the accuracy of streamflow predictions across different scenarios.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"56 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced monthly streamflow prediction using an input–output bi-decomposition data driven model considering meteorological and climate information\",\"authors\":\"Qiucen Guo, Xuehua Zhao, Yuhang Zhao, Zhijing Ren, Huifang Wang, Wenjun Cai\",\"doi\":\"10.1007/s00477-024-02731-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate streamflow prediction is significant for water resources management. However, due to the impact of climate change and human activities, accurately identifying the input factors of the streamflow prediction model and achieving high-precision results presents a significant challenge. In this study, past streamflow, meteorological, and climate factors were utilized as inputs to develop a predictive scenario for the bi-decomposition of input factors and streamflow series, i.e. Scenario 3 (S3). Mutual information (MI) was applied to recognize the input factors prediction potential. Based on the predictive potentials, factors were progressively incorporated into the kernel extreme learning machine (KELM) and hybrid kernel extreme learning machine (HKELM) models optimized by the gazelle optimization algorithm (GOA) to ascertain the optimal input configuration for each sub-series. The prediction results of S3-KELM and S3-HKELM models were obtained by reconstructing the optimal prediction results of each sub-series. The monthly streamflow of the upper Fenhe River Basin, which is in the semi-humid and semi-arid climate zone, was selected as a case study. The results indicate that in comparison to both undecomposed and singly decomposed scenarios, the input–output bi-decomposed scenario more accurately identifies the input factors and constructs high-precision prediction models. The Nash–Sutcliffe efficiency (NSE) of both the S3-KELM and S3-HKELM models exceeds 0.85. Specifically, the S3-HKELM model demonstrates superior performance, capable of handling more complex inputs, with its NSE reaching up to 0.93. Importantly, meteorological and climate factors contribute to the accuracy of streamflow predictions across different scenarios.</p>\",\"PeriodicalId\":21987,\"journal\":{\"name\":\"Stochastic Environmental Research and Risk Assessment\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Environmental Research and Risk Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00477-024-02731-1\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02731-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Enhanced monthly streamflow prediction using an input–output bi-decomposition data driven model considering meteorological and climate information
Accurate streamflow prediction is significant for water resources management. However, due to the impact of climate change and human activities, accurately identifying the input factors of the streamflow prediction model and achieving high-precision results presents a significant challenge. In this study, past streamflow, meteorological, and climate factors were utilized as inputs to develop a predictive scenario for the bi-decomposition of input factors and streamflow series, i.e. Scenario 3 (S3). Mutual information (MI) was applied to recognize the input factors prediction potential. Based on the predictive potentials, factors were progressively incorporated into the kernel extreme learning machine (KELM) and hybrid kernel extreme learning machine (HKELM) models optimized by the gazelle optimization algorithm (GOA) to ascertain the optimal input configuration for each sub-series. The prediction results of S3-KELM and S3-HKELM models were obtained by reconstructing the optimal prediction results of each sub-series. The monthly streamflow of the upper Fenhe River Basin, which is in the semi-humid and semi-arid climate zone, was selected as a case study. The results indicate that in comparison to both undecomposed and singly decomposed scenarios, the input–output bi-decomposed scenario more accurately identifies the input factors and constructs high-precision prediction models. The Nash–Sutcliffe efficiency (NSE) of both the S3-KELM and S3-HKELM models exceeds 0.85. Specifically, the S3-HKELM model demonstrates superior performance, capable of handling more complex inputs, with its NSE reaching up to 0.93. Importantly, meteorological and climate factors contribute to the accuracy of streamflow predictions across different scenarios.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.