{"title":"对 CdSe 纳米晶体和块体材料中 Mn2+ 缺陷结构的研究以及 CdX(X = S、Se、Te)纳米晶体中 Mn2+ 的占据标准","authors":"Guo-Liang Li, Shao-Yi Wu, Kai-Min Fan","doi":"10.1002/mrc.5446","DOIUrl":null,"url":null,"abstract":"<p>The spin Hamiltonian parameters and defect structures are theoretically studied for the substitutional Mn<sup>2+</sup> at the core of CdSe nanocrystals and in the bulk materials from the perturbation calculations of spin Hamiltonian parameters for trigonal tetrahedral 3d<sup>5</sup> clusters. Both the crystal-field and charge transfer contributions are taken into account in the calculations from the cluster approach. The impurity-ligand bond angles are found to be about 1.84° larger and 0.10° smaller in the CdSe:Mn<sup>2+</sup> nanocrystals and bulk materials, respectively, than those (≈109.37°) of the host Cd<sup>2+</sup> sites. The quantitative criterion of occupation (at the core or surface) for Mn<sup>2+</sup> in CdX (X = S, Se, Te) nanocrystals is presented for the first time based on the inequations of hyperfine structure constants (HSCs). This criterion is well supported by the experimental HSCs data of Mn<sup>2+</sup> in CdX nanocrystals. The previous assignments of signals SI as Mn<sup>2+</sup> at the core of CdS nanocrystals are renewed as Mn<sup>2+</sup> at the surface based on the above criterion. The present studies would be helpful to achieve convenient determination of occupation for Mn<sup>2+</sup> impurities in CdX semiconductor nanocrystals by means of spectral (e.g., HSCs) analysis.</p>","PeriodicalId":18142,"journal":{"name":"Magnetic Resonance in Chemistry","volume":"62 8","pages":"610-618"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations on the defect structures for Mn2+ in CdSe nanocrystals and bulk materials and the criterion of occupation for Mn2+ in CdX (X = S, Se, Te) nanocrystals\",\"authors\":\"Guo-Liang Li, Shao-Yi Wu, Kai-Min Fan\",\"doi\":\"10.1002/mrc.5446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The spin Hamiltonian parameters and defect structures are theoretically studied for the substitutional Mn<sup>2+</sup> at the core of CdSe nanocrystals and in the bulk materials from the perturbation calculations of spin Hamiltonian parameters for trigonal tetrahedral 3d<sup>5</sup> clusters. Both the crystal-field and charge transfer contributions are taken into account in the calculations from the cluster approach. The impurity-ligand bond angles are found to be about 1.84° larger and 0.10° smaller in the CdSe:Mn<sup>2+</sup> nanocrystals and bulk materials, respectively, than those (≈109.37°) of the host Cd<sup>2+</sup> sites. The quantitative criterion of occupation (at the core or surface) for Mn<sup>2+</sup> in CdX (X = S, Se, Te) nanocrystals is presented for the first time based on the inequations of hyperfine structure constants (HSCs). This criterion is well supported by the experimental HSCs data of Mn<sup>2+</sup> in CdX nanocrystals. The previous assignments of signals SI as Mn<sup>2+</sup> at the core of CdS nanocrystals are renewed as Mn<sup>2+</sup> at the surface based on the above criterion. The present studies would be helpful to achieve convenient determination of occupation for Mn<sup>2+</sup> impurities in CdX semiconductor nanocrystals by means of spectral (e.g., HSCs) analysis.</p>\",\"PeriodicalId\":18142,\"journal\":{\"name\":\"Magnetic Resonance in Chemistry\",\"volume\":\"62 8\",\"pages\":\"610-618\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5446\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrc.5446","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigations on the defect structures for Mn2+ in CdSe nanocrystals and bulk materials and the criterion of occupation for Mn2+ in CdX (X = S, Se, Te) nanocrystals
The spin Hamiltonian parameters and defect structures are theoretically studied for the substitutional Mn2+ at the core of CdSe nanocrystals and in the bulk materials from the perturbation calculations of spin Hamiltonian parameters for trigonal tetrahedral 3d5 clusters. Both the crystal-field and charge transfer contributions are taken into account in the calculations from the cluster approach. The impurity-ligand bond angles are found to be about 1.84° larger and 0.10° smaller in the CdSe:Mn2+ nanocrystals and bulk materials, respectively, than those (≈109.37°) of the host Cd2+ sites. The quantitative criterion of occupation (at the core or surface) for Mn2+ in CdX (X = S, Se, Te) nanocrystals is presented for the first time based on the inequations of hyperfine structure constants (HSCs). This criterion is well supported by the experimental HSCs data of Mn2+ in CdX nanocrystals. The previous assignments of signals SI as Mn2+ at the core of CdS nanocrystals are renewed as Mn2+ at the surface based on the above criterion. The present studies would be helpful to achieve convenient determination of occupation for Mn2+ impurities in CdX semiconductor nanocrystals by means of spectral (e.g., HSCs) analysis.
期刊介绍:
MRC is devoted to the rapid publication of papers which are concerned with the development of magnetic resonance techniques, or in which the application of such techniques plays a pivotal part. Contributions from scientists working in all areas of NMR, ESR and NQR are invited, and papers describing applications in all branches of chemistry, structural biology and materials chemistry are published.
The journal is of particular interest not only to scientists working in academic research, but also those working in commercial organisations who need to keep up-to-date with the latest practical applications of magnetic resonance techniques.