K. Bhandari, R. de A. Capistrano-Filho, S. Majumdar, T. Y. Tanaka
{"title":"耦合线性薛定谔方程:控制和稳定结果","authors":"K. Bhandari, R. de A. Capistrano-Filho, S. Majumdar, T. Y. Tanaka","doi":"10.1007/s00033-024-02242-7","DOIUrl":null,"url":null,"abstract":"<p>This article presents some controllability and stabilization results for a system of two coupled linear Schrödinger equations in the one-dimensional case where the state components are interacting through the Kirchhoff boundary conditions. Considering the system in a bounded domain, the null boundary controllability result is shown. The result is achieved thanks to a new Carleman estimate, which ensures a boundary observation. Additionally, this boundary observation together with some trace estimates, helps us to use the Gramian approach, with a suitable choice of feedback law, to prove that the system under consideration decays exponentially to zero at least as fast as the function <span>\\(e^{-2\\omega t}\\)</span> for some <span>\\(\\omega >0\\)</span>.</p>","PeriodicalId":501481,"journal":{"name":"Zeitschrift für angewandte Mathematik und Physik","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled linear Schrödinger equations: control and stabilization results\",\"authors\":\"K. Bhandari, R. de A. Capistrano-Filho, S. Majumdar, T. Y. Tanaka\",\"doi\":\"10.1007/s00033-024-02242-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article presents some controllability and stabilization results for a system of two coupled linear Schrödinger equations in the one-dimensional case where the state components are interacting through the Kirchhoff boundary conditions. Considering the system in a bounded domain, the null boundary controllability result is shown. The result is achieved thanks to a new Carleman estimate, which ensures a boundary observation. Additionally, this boundary observation together with some trace estimates, helps us to use the Gramian approach, with a suitable choice of feedback law, to prove that the system under consideration decays exponentially to zero at least as fast as the function <span>\\\\(e^{-2\\\\omega t}\\\\)</span> for some <span>\\\\(\\\\omega >0\\\\)</span>.</p>\",\"PeriodicalId\":501481,\"journal\":{\"name\":\"Zeitschrift für angewandte Mathematik und Physik\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift für angewandte Mathematik und Physik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00033-024-02242-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für angewandte Mathematik und Physik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00033-024-02242-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coupled linear Schrödinger equations: control and stabilization results
This article presents some controllability and stabilization results for a system of two coupled linear Schrödinger equations in the one-dimensional case where the state components are interacting through the Kirchhoff boundary conditions. Considering the system in a bounded domain, the null boundary controllability result is shown. The result is achieved thanks to a new Carleman estimate, which ensures a boundary observation. Additionally, this boundary observation together with some trace estimates, helps us to use the Gramian approach, with a suitable choice of feedback law, to prove that the system under consideration decays exponentially to zero at least as fast as the function \(e^{-2\omega t}\) for some \(\omega >0\).