用随机标签平滑法重新思考正则化问题

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Processing Letters Pub Date : 2024-04-27 DOI:10.1007/s11063-024-11579-z
Claudio Filipi Gonçalves dos Santos, João Paulo Papa
{"title":"用随机标签平滑法重新思考正则化问题","authors":"Claudio Filipi Gonçalves dos Santos, João Paulo Papa","doi":"10.1007/s11063-024-11579-z","DOIUrl":null,"url":null,"abstract":"<p>Regularization helps to improve machine learning techniques by penalizing the models during training. Such approaches act in either the input, internal, or output layers. Regarding the latter, label smoothing is widely used to introduce noise in the label vector, making learning more challenging. This work proposes a new label regularization method, Random Label Smoothing, that attributes random values to the labels while preserving their semantics during training. The idea is to change the entire label into fixed arbitrary values. Results show improvements in image classification and super-resolution tasks, outperforming state-of-the-art techniques for such purposes.\n</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"18 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rethinking Regularization with Random Label Smoothing\",\"authors\":\"Claudio Filipi Gonçalves dos Santos, João Paulo Papa\",\"doi\":\"10.1007/s11063-024-11579-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Regularization helps to improve machine learning techniques by penalizing the models during training. Such approaches act in either the input, internal, or output layers. Regarding the latter, label smoothing is widely used to introduce noise in the label vector, making learning more challenging. This work proposes a new label regularization method, Random Label Smoothing, that attributes random values to the labels while preserving their semantics during training. The idea is to change the entire label into fixed arbitrary values. Results show improvements in image classification and super-resolution tasks, outperforming state-of-the-art techniques for such purposes.\\n</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11579-z\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11579-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

正则化通过在训练过程中对模型进行惩罚来帮助改进机器学习技术。此类方法可在输入层、内部层或输出层发挥作用。关于后者,标签平滑被广泛用于在标签向量中引入噪声,使学习更具挑战性。本研究提出了一种新的标签正则化方法--随机标签平滑法,在训练过程中保留标签语义的同时,为标签赋予随机值。这种方法的理念是将整个标签改变为固定的任意值。结果表明,该方法在图像分类和超分辨率任务中取得了改进,其性能优于用于此类目的的最先进技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rethinking Regularization with Random Label Smoothing

Regularization helps to improve machine learning techniques by penalizing the models during training. Such approaches act in either the input, internal, or output layers. Regarding the latter, label smoothing is widely used to introduce noise in the label vector, making learning more challenging. This work proposes a new label regularization method, Random Label Smoothing, that attributes random values to the labels while preserving their semantics during training. The idea is to change the entire label into fixed arbitrary values. Results show improvements in image classification and super-resolution tasks, outperforming state-of-the-art techniques for such purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
期刊最新文献
Label-Only Membership Inference Attack Based on Model Explanation A Robot Ground Medium Classification Algorithm Based on Feature Fusion and Adaptive Spatio-Temporal Cascade Networks A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation A Clustering Pruning Method Based on Multidimensional Channel Information A Neural Network-Based Poisson Solver for Fluid Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1