{"title":"稀疏图的拉姆齐数","authors":"Jacob Fox, Xiaoyu He, Yuval Wigderson","doi":"10.1007/s11856-024-2624-y","DOIUrl":null,"url":null,"abstract":"<p>Burr and Erdős in 1975 conjectured, and Chvátal, Rödl, Szemerédi and Trotter later proved, that the Ramsey number of any bounded degree graph is linear in the number of vertices. In this paper, we disprove the natural directed analogue of the Burr–Erdős conjecture, answering a question of Bucić, Letzter, and Sudakov. If <i>H</i> is an acyclic digraph, the oriented Ramsey number of <i>H</i>, denoted <span>\\(\\overrightarrow {{r_1}} (H)\\)</span>, is the least <i>N</i> such that every tournament on <i>N</i> vertices contains a copy of <i>H</i>. We show that for any Δ ≥ 2 and any sufficiently large <i>n</i>, there exists an acyclic digraph <i>H</i> with <i>n</i> vertices and maximum degree Δ such that </p><span>$$\\overrightarrow {{r_1}} (H) \\ge {n^{\\Omega ({\\Delta ^{2/3}}/{{\\log }^{5/3}}\\,\\Delta )}}.$$</span><p>This proves that <span>\\(\\overrightarrow {{r_1}} (H)\\)</span> is not always linear in the number of vertices for bounded-degree <i>H</i>. On the other hand, we show that <span>\\(\\overrightarrow {{r_1}} (H)\\)</span> is nearly linear in the number of vertices for typical bounded-degree acyclic digraphs <i>H</i>, and obtain linear or nearly linear bounds for several natural families of bounded-degree acyclic digraphs.</p><p>For multiple colors, we prove a quasi-polynomial upper bound <span>\\(\\overrightarrow {{r_k}} (H) = {2^{{{(\\log \\,n)}^{{O_k}(1)}}}}\\)</span> for all bounded-de gree acyclic digraphs <i>H</i> on <i>n</i> vertices, where <span>\\(\\overrightarrow {{r_k}} (H)\\)</span> is the least <i>N</i> such that every <i>k</i>-edge-colored tournament on <i>N</i> vertices contains a monochromatic copy of <i>H</i>. For <i>k</i> ≥ 2 and <i>n</i> ≥ 4, we exhibit an acyclic digraph <i>H</i> with <i>n</i> vertices and maximum degree 3 such that <span>\\(\\overrightarrow {{r_k}} (H) \\ge {n^{\\Omega (\\log \\,n/\\log \\log \\,n)}}\\)</span>, showing that these Ramsey numbers can grow faster than any polynomial in the number of vertices.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ramsey numbers of sparse digraphs\",\"authors\":\"Jacob Fox, Xiaoyu He, Yuval Wigderson\",\"doi\":\"10.1007/s11856-024-2624-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Burr and Erdős in 1975 conjectured, and Chvátal, Rödl, Szemerédi and Trotter later proved, that the Ramsey number of any bounded degree graph is linear in the number of vertices. In this paper, we disprove the natural directed analogue of the Burr–Erdős conjecture, answering a question of Bucić, Letzter, and Sudakov. If <i>H</i> is an acyclic digraph, the oriented Ramsey number of <i>H</i>, denoted <span>\\\\(\\\\overrightarrow {{r_1}} (H)\\\\)</span>, is the least <i>N</i> such that every tournament on <i>N</i> vertices contains a copy of <i>H</i>. We show that for any Δ ≥ 2 and any sufficiently large <i>n</i>, there exists an acyclic digraph <i>H</i> with <i>n</i> vertices and maximum degree Δ such that </p><span>$$\\\\overrightarrow {{r_1}} (H) \\\\ge {n^{\\\\Omega ({\\\\Delta ^{2/3}}/{{\\\\log }^{5/3}}\\\\,\\\\Delta )}}.$$</span><p>This proves that <span>\\\\(\\\\overrightarrow {{r_1}} (H)\\\\)</span> is not always linear in the number of vertices for bounded-degree <i>H</i>. On the other hand, we show that <span>\\\\(\\\\overrightarrow {{r_1}} (H)\\\\)</span> is nearly linear in the number of vertices for typical bounded-degree acyclic digraphs <i>H</i>, and obtain linear or nearly linear bounds for several natural families of bounded-degree acyclic digraphs.</p><p>For multiple colors, we prove a quasi-polynomial upper bound <span>\\\\(\\\\overrightarrow {{r_k}} (H) = {2^{{{(\\\\log \\\\,n)}^{{O_k}(1)}}}}\\\\)</span> for all bounded-de gree acyclic digraphs <i>H</i> on <i>n</i> vertices, where <span>\\\\(\\\\overrightarrow {{r_k}} (H)\\\\)</span> is the least <i>N</i> such that every <i>k</i>-edge-colored tournament on <i>N</i> vertices contains a monochromatic copy of <i>H</i>. For <i>k</i> ≥ 2 and <i>n</i> ≥ 4, we exhibit an acyclic digraph <i>H</i> with <i>n</i> vertices and maximum degree 3 such that <span>\\\\(\\\\overrightarrow {{r_k}} (H) \\\\ge {n^{\\\\Omega (\\\\log \\\\,n/\\\\log \\\\log \\\\,n)}}\\\\)</span>, showing that these Ramsey numbers can grow faster than any polynomial in the number of vertices.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2624-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2624-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
Burr 和 Erdős 在 1975 年猜想,Chvátal、Rödl、Szemerédi 和 Trotter 随后证明,任何有界度图的拉姆齐数与顶点数呈线性关系。在本文中,我们反证了 Burr-Erdős 猜想的自然有向类比,回答了 Bucić、Letzter 和 Sudakov 的一个问题。如果 H 是一个非循环数图,那么 H 的定向拉姆齐数表示为 \(\overrightarrow {{r_1}}), 是 \(\overrightarrow {{r_1}}).(我们证明,对于任意 Δ ≥ 2 和任意足够大的 n,存在一个具有 n 个顶点和最大度 Δ 的无循环数图 H,使得 $$\overrightarrow {{r_1}}(H) \ge {n^{Omega ({\Delta ^{2/3}}/{\log }^{5/3}}}\,\Delta )}} 。(H)\) 并不总是与有界度 H 的顶点数呈线性关系。(H)\) 对于典型的有界度无循环图 H 的顶点数来说几乎是线性的,而且我们还得到了有界度无循环图的几个自然族的线性或接近线性的边界。(H) = {2^{{((log \,n)}^{O_k}(1)}}}}\)适用于 n 个顶点上的所有有界无度非循环数图 H,其中 (\(\overrightarrow {{r_k}} (H)\)是有界无度非循环数图 H 的上界。(对于 k ≥ 2 和 n ≥ 4,我们展示了一个有 n 个顶点、最大阶数为 3 的无循环数图 H,使得(H) \ge {n^{\Omega (\log \,n/\log \log \,n)}}),表明这些拉姆齐数的增长速度可以超过顶点数的任何多项式。
Burr and Erdős in 1975 conjectured, and Chvátal, Rödl, Szemerédi and Trotter later proved, that the Ramsey number of any bounded degree graph is linear in the number of vertices. In this paper, we disprove the natural directed analogue of the Burr–Erdős conjecture, answering a question of Bucić, Letzter, and Sudakov. If H is an acyclic digraph, the oriented Ramsey number of H, denoted \(\overrightarrow {{r_1}} (H)\), is the least N such that every tournament on N vertices contains a copy of H. We show that for any Δ ≥ 2 and any sufficiently large n, there exists an acyclic digraph H with n vertices and maximum degree Δ such that
This proves that \(\overrightarrow {{r_1}} (H)\) is not always linear in the number of vertices for bounded-degree H. On the other hand, we show that \(\overrightarrow {{r_1}} (H)\) is nearly linear in the number of vertices for typical bounded-degree acyclic digraphs H, and obtain linear or nearly linear bounds for several natural families of bounded-degree acyclic digraphs.
For multiple colors, we prove a quasi-polynomial upper bound \(\overrightarrow {{r_k}} (H) = {2^{{{(\log \,n)}^{{O_k}(1)}}}}\) for all bounded-de gree acyclic digraphs H on n vertices, where \(\overrightarrow {{r_k}} (H)\) is the least N such that every k-edge-colored tournament on N vertices contains a monochromatic copy of H. For k ≥ 2 and n ≥ 4, we exhibit an acyclic digraph H with n vertices and maximum degree 3 such that \(\overrightarrow {{r_k}} (H) \ge {n^{\Omega (\log \,n/\log \log \,n)}}\), showing that these Ramsey numbers can grow faster than any polynomial in the number of vertices.