L La Placa, S Cornali, F Bertinaria, A Rossetti, M Marchini, R Reggiani, P Battilani
{"title":"有机耕作中罗勒霜霉病防治的种植系统支持:为期两年的露天田间试验","authors":"L La Placa, S Cornali, F Bertinaria, A Rossetti, M Marchini, R Reggiani, P Battilani","doi":"10.1007/s42161-024-01651-x","DOIUrl":null,"url":null,"abstract":"<p>Basil Downy Mildew (BDM), caused by the oomycete <i>Peronospora belbahrii,</i> is a major issue for sweet basil (<i>Ocimum basilicum</i> L.) production worldwide. Currently, the disease is mainly controlled by chemical fungicides, but the development of populations of the pathogen which are resistant to the most widely used compounds is leading to the research of alternative crop protection strategies. Therefore, in this paper, some cropping variables were tested in a field trial conducted in two consecutive years (2021 and 2022) in Northern Italy in organic farming conditions, with the overall objective to optimize basil productivity and quality and limit BDM occurrence. These include two basil varieties, two sowing densities (dense, 30 kg/ha, and sparse, 15 kg/ha), and two irrigation systems (drip and sprinkler). A higher incidence and severity of BDM in 2022 compared to 2021 was observed, mainly due to the different climatic conditions that occurred in the two years. Year 2022 was characterized by high temperatures and repeated drought phenomena that led to basil stress and BDM severe outbreak. Moreover, variety 1 (considered resistant to <i>P. belbahrii</i>) was confirmed to be completely resistant in 2021 but it was found to be susceptible the following year, with disease incidence and severity comparable to variety 2 (medium susceptible). No differences were detected in terms of BDM occurrence and crop yield between the two sowing densities (mean of 58.4% and 26.6% of BDM incidence and severity, respectively; mean yield 1.4 kg/m<sup>2</sup>), while it emerged that drip irrigation can be useful in reducing BDM (−23.1% BDM severity). Therefore, this study suggests that the crop protection strategies tested, even if not definitive solutions, can significantly contribute to manage BDM more effectively, while preserving basil productivity and quality.</p>","PeriodicalId":16837,"journal":{"name":"Journal of Plant Pathology","volume":"70 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cropping system support in downy mildew control in basil in organic farming: a two-year open field experiment\",\"authors\":\"L La Placa, S Cornali, F Bertinaria, A Rossetti, M Marchini, R Reggiani, P Battilani\",\"doi\":\"10.1007/s42161-024-01651-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Basil Downy Mildew (BDM), caused by the oomycete <i>Peronospora belbahrii,</i> is a major issue for sweet basil (<i>Ocimum basilicum</i> L.) production worldwide. Currently, the disease is mainly controlled by chemical fungicides, but the development of populations of the pathogen which are resistant to the most widely used compounds is leading to the research of alternative crop protection strategies. Therefore, in this paper, some cropping variables were tested in a field trial conducted in two consecutive years (2021 and 2022) in Northern Italy in organic farming conditions, with the overall objective to optimize basil productivity and quality and limit BDM occurrence. These include two basil varieties, two sowing densities (dense, 30 kg/ha, and sparse, 15 kg/ha), and two irrigation systems (drip and sprinkler). A higher incidence and severity of BDM in 2022 compared to 2021 was observed, mainly due to the different climatic conditions that occurred in the two years. Year 2022 was characterized by high temperatures and repeated drought phenomena that led to basil stress and BDM severe outbreak. Moreover, variety 1 (considered resistant to <i>P. belbahrii</i>) was confirmed to be completely resistant in 2021 but it was found to be susceptible the following year, with disease incidence and severity comparable to variety 2 (medium susceptible). No differences were detected in terms of BDM occurrence and crop yield between the two sowing densities (mean of 58.4% and 26.6% of BDM incidence and severity, respectively; mean yield 1.4 kg/m<sup>2</sup>), while it emerged that drip irrigation can be useful in reducing BDM (−23.1% BDM severity). Therefore, this study suggests that the crop protection strategies tested, even if not definitive solutions, can significantly contribute to manage BDM more effectively, while preserving basil productivity and quality.</p>\",\"PeriodicalId\":16837,\"journal\":{\"name\":\"Journal of Plant Pathology\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Pathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s42161-024-01651-x\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42161-024-01651-x","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Cropping system support in downy mildew control in basil in organic farming: a two-year open field experiment
Basil Downy Mildew (BDM), caused by the oomycete Peronospora belbahrii, is a major issue for sweet basil (Ocimum basilicum L.) production worldwide. Currently, the disease is mainly controlled by chemical fungicides, but the development of populations of the pathogen which are resistant to the most widely used compounds is leading to the research of alternative crop protection strategies. Therefore, in this paper, some cropping variables were tested in a field trial conducted in two consecutive years (2021 and 2022) in Northern Italy in organic farming conditions, with the overall objective to optimize basil productivity and quality and limit BDM occurrence. These include two basil varieties, two sowing densities (dense, 30 kg/ha, and sparse, 15 kg/ha), and two irrigation systems (drip and sprinkler). A higher incidence and severity of BDM in 2022 compared to 2021 was observed, mainly due to the different climatic conditions that occurred in the two years. Year 2022 was characterized by high temperatures and repeated drought phenomena that led to basil stress and BDM severe outbreak. Moreover, variety 1 (considered resistant to P. belbahrii) was confirmed to be completely resistant in 2021 but it was found to be susceptible the following year, with disease incidence and severity comparable to variety 2 (medium susceptible). No differences were detected in terms of BDM occurrence and crop yield between the two sowing densities (mean of 58.4% and 26.6% of BDM incidence and severity, respectively; mean yield 1.4 kg/m2), while it emerged that drip irrigation can be useful in reducing BDM (−23.1% BDM severity). Therefore, this study suggests that the crop protection strategies tested, even if not definitive solutions, can significantly contribute to manage BDM more effectively, while preserving basil productivity and quality.
期刊介绍:
The Journal of Plant Pathology (JPP or JPPY) is the main publication of the Italian Society of Plant Pathology (SiPAV), and publishes original contributions in the form of full-length papers, short communications, disease notes, and review articles on mycology, bacteriology, virology, phytoplasmatology, physiological plant pathology, plant-pathogeninteractions, post-harvest diseases, non-infectious diseases, and plant protection. In vivo results are required for plant protection submissions. Varietal trials for disease resistance and gene mapping are not published in the journal unless such findings are already employed in the context of strategic approaches for disease management. However, studies identifying actual genes involved in virulence are pertinent to thescope of the Journal and may be submitted. The journal highlights particularly timely or novel contributions in its Editors’ choice section, to appear at the beginning of each volume. Surveys for diseases or pathogens should be submitted as "Short communications".