Nauman Raza, Nahal Jannat, Ghada Ali Basendwah, Ahmet Bekir
{"title":"浅水波浪中新型模型的动力学分析和孤子结构提取","authors":"Nauman Raza, Nahal Jannat, Ghada Ali Basendwah, Ahmet Bekir","doi":"10.1142/s0217984924503846","DOIUrl":null,"url":null,"abstract":"<p>In this study, we utilized a novel auto-Bäcklund transformation and the extended transformed rational function approach to analyze the extended reduced Jimbo–Miwa equation, a prominent equation within the KP hierarchy. The homogenous balance technique was employed to derive the auto-Bäcklund transformation of the equation, leading to the extraction of new exact solutions exhibiting solitary patterns. Additionally, we applied the extended transformed rational function method, which relies on the Hirota bilinear form of the governing equation, to generate complexiton solutions. Furthermore, we included 3D graphics visualizing the obtained solutions.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"73 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical analysis and extraction of solitonic structures of a novel model in shallow water waves\",\"authors\":\"Nauman Raza, Nahal Jannat, Ghada Ali Basendwah, Ahmet Bekir\",\"doi\":\"10.1142/s0217984924503846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we utilized a novel auto-Bäcklund transformation and the extended transformed rational function approach to analyze the extended reduced Jimbo–Miwa equation, a prominent equation within the KP hierarchy. The homogenous balance technique was employed to derive the auto-Bäcklund transformation of the equation, leading to the extraction of new exact solutions exhibiting solitary patterns. Additionally, we applied the extended transformed rational function method, which relies on the Hirota bilinear form of the governing equation, to generate complexiton solutions. Furthermore, we included 3D graphics visualizing the obtained solutions.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924503846\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503846","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Dynamical analysis and extraction of solitonic structures of a novel model in shallow water waves
In this study, we utilized a novel auto-Bäcklund transformation and the extended transformed rational function approach to analyze the extended reduced Jimbo–Miwa equation, a prominent equation within the KP hierarchy. The homogenous balance technique was employed to derive the auto-Bäcklund transformation of the equation, leading to the extraction of new exact solutions exhibiting solitary patterns. Additionally, we applied the extended transformed rational function method, which relies on the Hirota bilinear form of the governing equation, to generate complexiton solutions. Furthermore, we included 3D graphics visualizing the obtained solutions.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.