Mujahid Iqbal, Dianchen Lu, Aly R. Seadawy, Nahaa E. Alsubaie, Zhanar Umurzakhova, Ratbay Myrzakulov
{"title":"通过计算模拟对复杂非线性库拉雷-II 方程的精确光学孤子结构进行动力学分析","authors":"Mujahid Iqbal, Dianchen Lu, Aly R. Seadawy, Nahaa E. Alsubaie, Zhanar Umurzakhova, Ratbay Myrzakulov","doi":"10.1142/s0217984924503676","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we successfully extracted the various types of soliton solutions for the complex nonlinear Kuralay-II equation through the improved F-expansion method with symbolic computational software Mathematica. The extracted soliton solutions for the Kuralay-II equation are interesting, novel and more general such as anti-kink wave solitons, dark solitons, kink wave solitons, bright solitons, periodic wave solitons, mixed solitons in bright-dark soliton shape, peakon solitons, and solitary wave structures. The graphical structure of some extracted solutions is visualized in 2D, 3D and contour plottings with imaginary, real, and absolute values of the functions by using the numerical simulation. The proposed research will contribute to advancing our knowledge about the complex nonlinear Kuralay-II equation and demonstrating the applicability to the proposed approach to investigate other higher-order complex nonlinear equations. The successful investigation demonstrated that the proposed method is effective, simple, more powerful, efficient and can be utilized on a variety of other nonlinear equations. The explored solitary waves and optical solitons will play an important role in the investigation of nonlinear phenomena in various domains of science and engineering.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"6 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamical analysis of exact optical soliton structures of the complex nonlinear Kuralay-II equation through computational simulation\",\"authors\":\"Mujahid Iqbal, Dianchen Lu, Aly R. Seadawy, Nahaa E. Alsubaie, Zhanar Umurzakhova, Ratbay Myrzakulov\",\"doi\":\"10.1142/s0217984924503676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we successfully extracted the various types of soliton solutions for the complex nonlinear Kuralay-II equation through the improved F-expansion method with symbolic computational software Mathematica. The extracted soliton solutions for the Kuralay-II equation are interesting, novel and more general such as anti-kink wave solitons, dark solitons, kink wave solitons, bright solitons, periodic wave solitons, mixed solitons in bright-dark soliton shape, peakon solitons, and solitary wave structures. The graphical structure of some extracted solutions is visualized in 2D, 3D and contour plottings with imaginary, real, and absolute values of the functions by using the numerical simulation. The proposed research will contribute to advancing our knowledge about the complex nonlinear Kuralay-II equation and demonstrating the applicability to the proposed approach to investigate other higher-order complex nonlinear equations. The successful investigation demonstrated that the proposed method is effective, simple, more powerful, efficient and can be utilized on a variety of other nonlinear equations. The explored solitary waves and optical solitons will play an important role in the investigation of nonlinear phenomena in various domains of science and engineering.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924503676\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503676","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文利用符号计算软件 Mathematica,通过改进的 F 展开方法,成功提取了复杂非线性库拉雷-II 方程的各类孤子解。所提取的库拉雷-II方程的孤子解具有趣味性、新颖性和通用性,如反扭波孤子、暗孤子、扭波孤子、亮孤子、周期波孤子、亮暗混合孤子、峰孤子和孤波结构等。通过数值模拟,一些提取解的图形结构以二维、三维和等值线图的形式直观呈现,并包含函数的虚值、实值和绝对值。拟议的研究将有助于增进我们对复杂非线性库拉雷-II 方程的了解,并证明拟议的方法适用于研究其他高阶复杂非线性方程。成功的研究表明,提出的方法有效、简单、功能强大、效率高,可用于其他各种非线性方程。所探索的孤波和光孤子将在科学和工程各领域的非线性现象研究中发挥重要作用。
Dynamical analysis of exact optical soliton structures of the complex nonlinear Kuralay-II equation through computational simulation
In this paper, we successfully extracted the various types of soliton solutions for the complex nonlinear Kuralay-II equation through the improved F-expansion method with symbolic computational software Mathematica. The extracted soliton solutions for the Kuralay-II equation are interesting, novel and more general such as anti-kink wave solitons, dark solitons, kink wave solitons, bright solitons, periodic wave solitons, mixed solitons in bright-dark soliton shape, peakon solitons, and solitary wave structures. The graphical structure of some extracted solutions is visualized in 2D, 3D and contour plottings with imaginary, real, and absolute values of the functions by using the numerical simulation. The proposed research will contribute to advancing our knowledge about the complex nonlinear Kuralay-II equation and demonstrating the applicability to the proposed approach to investigate other higher-order complex nonlinear equations. The successful investigation demonstrated that the proposed method is effective, simple, more powerful, efficient and can be utilized on a variety of other nonlinear equations. The explored solitary waves and optical solitons will play an important role in the investigation of nonlinear phenomena in various domains of science and engineering.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.