Zongwang Wu, Hossein Moayedi, Marjan Salari, Binh Nguyen Le, Atefeh Ahmadi Dehrashid
{"title":"评估地下水中的钠吸附率 (SAR):将实验数据与最先进的群集智能方法相结合","authors":"Zongwang Wu, Hossein Moayedi, Marjan Salari, Binh Nguyen Le, Atefeh Ahmadi Dehrashid","doi":"10.1007/s00477-024-02727-x","DOIUrl":null,"url":null,"abstract":"<p>In developing countries, evaluating irrigation water quality using conventional methods can be costly and time-consuming. To overcome these challenges, this study explores the potential of utilizing physical parameters and artificial intelligence (AI) models for predicting and evaluating the quality indicators of irrigation water in aquifer systems. To achieve this goal, novel hybrid methods, namely the Whale Optimization Algorithm (WOA) and Wind-Driven Optimization (WDO), are employed in conjunction with Artificial Neural Network (ANN) models. The specific objective of this study is to forecast the Sodium Adsorption Ratio (SAR) by considering independent variables such as Na<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Na percent, K<sup>+</sup>, SO<sub>4</sub><sup>2−</sup>, Cl<sup>−</sup>, pH, and HCO<sub>3</sub><sup>−</sup>. A dataset of 540 samples from the Shiraz plain, collected over a statistical period of 16 years (2002–2018), is used to estimate the groundwater quality variables. A pre-processing technique is applied in the AI approach to enhance the model's efficiency. The results indicate that the WDO-ANN model exhibits higher accuracy (R<sup>2</sup> = 0.9983 and RMSE = 0.10618) than the WOA-ANN model (R<sup>2</sup> = 0.9957 and RMSE = 0.16957). The optimization of computational parameters and comparison of AI model structures demonstrate that the WDO-ANN model outperforms the WOA-ANN model in predictive ability. In general, using AI models as a tool for low-cost and timely prediction of underground water quality using physical parameters as input variables has a high potential.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"20 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of sodium adsorption ratio (SAR) in groundwater: Integrating experimental data with cutting-edge swarm intelligence approaches\",\"authors\":\"Zongwang Wu, Hossein Moayedi, Marjan Salari, Binh Nguyen Le, Atefeh Ahmadi Dehrashid\",\"doi\":\"10.1007/s00477-024-02727-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In developing countries, evaluating irrigation water quality using conventional methods can be costly and time-consuming. To overcome these challenges, this study explores the potential of utilizing physical parameters and artificial intelligence (AI) models for predicting and evaluating the quality indicators of irrigation water in aquifer systems. To achieve this goal, novel hybrid methods, namely the Whale Optimization Algorithm (WOA) and Wind-Driven Optimization (WDO), are employed in conjunction with Artificial Neural Network (ANN) models. The specific objective of this study is to forecast the Sodium Adsorption Ratio (SAR) by considering independent variables such as Na<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Na percent, K<sup>+</sup>, SO<sub>4</sub><sup>2−</sup>, Cl<sup>−</sup>, pH, and HCO<sub>3</sub><sup>−</sup>. A dataset of 540 samples from the Shiraz plain, collected over a statistical period of 16 years (2002–2018), is used to estimate the groundwater quality variables. A pre-processing technique is applied in the AI approach to enhance the model's efficiency. The results indicate that the WDO-ANN model exhibits higher accuracy (R<sup>2</sup> = 0.9983 and RMSE = 0.10618) than the WOA-ANN model (R<sup>2</sup> = 0.9957 and RMSE = 0.16957). The optimization of computational parameters and comparison of AI model structures demonstrate that the WDO-ANN model outperforms the WOA-ANN model in predictive ability. In general, using AI models as a tool for low-cost and timely prediction of underground water quality using physical parameters as input variables has a high potential.</p>\",\"PeriodicalId\":21987,\"journal\":{\"name\":\"Stochastic Environmental Research and Risk Assessment\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Environmental Research and Risk Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s00477-024-02727-x\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02727-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Assessment of sodium adsorption ratio (SAR) in groundwater: Integrating experimental data with cutting-edge swarm intelligence approaches
In developing countries, evaluating irrigation water quality using conventional methods can be costly and time-consuming. To overcome these challenges, this study explores the potential of utilizing physical parameters and artificial intelligence (AI) models for predicting and evaluating the quality indicators of irrigation water in aquifer systems. To achieve this goal, novel hybrid methods, namely the Whale Optimization Algorithm (WOA) and Wind-Driven Optimization (WDO), are employed in conjunction with Artificial Neural Network (ANN) models. The specific objective of this study is to forecast the Sodium Adsorption Ratio (SAR) by considering independent variables such as Na+, Mg2+, Ca2+, Na percent, K+, SO42−, Cl−, pH, and HCO3−. A dataset of 540 samples from the Shiraz plain, collected over a statistical period of 16 years (2002–2018), is used to estimate the groundwater quality variables. A pre-processing technique is applied in the AI approach to enhance the model's efficiency. The results indicate that the WDO-ANN model exhibits higher accuracy (R2 = 0.9983 and RMSE = 0.10618) than the WOA-ANN model (R2 = 0.9957 and RMSE = 0.16957). The optimization of computational parameters and comparison of AI model structures demonstrate that the WDO-ANN model outperforms the WOA-ANN model in predictive ability. In general, using AI models as a tool for low-cost and timely prediction of underground water quality using physical parameters as input variables has a high potential.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.