过表达 SYNGAP1 可通过 Wnt/β-Catenin 信号通路抑制直肠腺癌的增殖

Yun Xiao, Ying Zhu, Jiaojiao Chen, Mei Wu, Lan Wang, Li Su, Fei Feng, Yanli Hou
{"title":"过表达 SYNGAP1 可通过 Wnt/β-Catenin 信号通路抑制直肠腺癌的增殖","authors":"Yun Xiao, Ying Zhu, Jiaojiao Chen, Mei Wu, Lan Wang, Li Su, Fei Feng, Yanli Hou","doi":"10.1007/s12672-024-00997-z","DOIUrl":null,"url":null,"abstract":"<p>Rectal adenocarcinoma (READ) is a common malignant tumor of the digestive tract. Growing studies have confirmed Ras GTPase-activating proteins are involved in the progression of several tumors. This study aimed to explore the expression and function of Ras GTPase-activating proteins in READ. In this study, we analyzed RNA sequencing data from 165 patients with READ and 789 normal tissue samples, identifying 5603 differentially expressed genes (DEGs), including 2937 upregulated genes and 2666 downregulated genes. Moreover, we also identified two dysregulated genes, RASA4 and SYNGAP1, among six Ras GTPase-activating proteins. High NF1 expression was associated with longer overall survival, while high SYNGAP1 expression showed a trend towards extended overall survival. Further analysis revealed the mutation frequency and copy number variations of Ras GTPase-activating proteins in various cancer samples. Additionally, DNA methylation analysis demonstrated a negative correlation between DNA methylation of Ras GTPase-activating proteins and their expression. Moreover, among Ras GTPase-activating proteins, we focused on SYNGAP1, and experimental validation confirmed that the overexpression of SYNGAP1 in READ significantly suppressed READ cell proliferation and increased apoptosis via regulating the Wnt/β-Catenin signaling pathway. These findings underscored the potential significance of SYNGAP1 in READ and provide new insights for further research and treatment.</p>","PeriodicalId":13170,"journal":{"name":"Hormones and Cancer","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overexpression of SYNGAP1 suppresses the proliferation of rectal adenocarcinoma via Wnt/β-Catenin signaling pathway\",\"authors\":\"Yun Xiao, Ying Zhu, Jiaojiao Chen, Mei Wu, Lan Wang, Li Su, Fei Feng, Yanli Hou\",\"doi\":\"10.1007/s12672-024-00997-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rectal adenocarcinoma (READ) is a common malignant tumor of the digestive tract. Growing studies have confirmed Ras GTPase-activating proteins are involved in the progression of several tumors. This study aimed to explore the expression and function of Ras GTPase-activating proteins in READ. In this study, we analyzed RNA sequencing data from 165 patients with READ and 789 normal tissue samples, identifying 5603 differentially expressed genes (DEGs), including 2937 upregulated genes and 2666 downregulated genes. Moreover, we also identified two dysregulated genes, RASA4 and SYNGAP1, among six Ras GTPase-activating proteins. High NF1 expression was associated with longer overall survival, while high SYNGAP1 expression showed a trend towards extended overall survival. Further analysis revealed the mutation frequency and copy number variations of Ras GTPase-activating proteins in various cancer samples. Additionally, DNA methylation analysis demonstrated a negative correlation between DNA methylation of Ras GTPase-activating proteins and their expression. Moreover, among Ras GTPase-activating proteins, we focused on SYNGAP1, and experimental validation confirmed that the overexpression of SYNGAP1 in READ significantly suppressed READ cell proliferation and increased apoptosis via regulating the Wnt/β-Catenin signaling pathway. These findings underscored the potential significance of SYNGAP1 in READ and provide new insights for further research and treatment.</p>\",\"PeriodicalId\":13170,\"journal\":{\"name\":\"Hormones and Cancer\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hormones and Cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12672-024-00997-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormones and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12672-024-00997-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

直肠腺癌(READ)是一种常见的消化道恶性肿瘤。越来越多的研究证实,Ras GTP酶激活蛋白参与了多种肿瘤的进展。本研究旨在探讨Ras GTP酶激活蛋白在READ中的表达和功能。在这项研究中,我们分析了165例READ患者和789例正常组织样本的RNA测序数据,发现了5603个差异表达基因(DEGs),包括2937个上调基因和2666个下调基因。此外,我们还在六个 Ras GTPase 激活蛋白中发现了两个表达失调的基因,即 RASA4 和 SYNGAP1。NF1的高表达与总生存期的延长有关,而SYNGAP1的高表达则有延长总生存期的趋势。进一步的分析显示了各种癌症样本中 Ras GTPase 激活蛋白的突变频率和拷贝数变化。此外,DNA甲基化分析表明,Ras GTPase激活蛋白的DNA甲基化与其表达呈负相关。此外,在Ras GTP酶激活蛋白中,我们重点研究了SYNGAP1,实验验证证实,在READ中过表达SYNGAP1可通过调节Wnt/β-Catenin信号通路显著抑制READ细胞增殖并增加细胞凋亡。这些发现强调了SYNGAP1在READ中的潜在意义,并为进一步的研究和治疗提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overexpression of SYNGAP1 suppresses the proliferation of rectal adenocarcinoma via Wnt/β-Catenin signaling pathway

Rectal adenocarcinoma (READ) is a common malignant tumor of the digestive tract. Growing studies have confirmed Ras GTPase-activating proteins are involved in the progression of several tumors. This study aimed to explore the expression and function of Ras GTPase-activating proteins in READ. In this study, we analyzed RNA sequencing data from 165 patients with READ and 789 normal tissue samples, identifying 5603 differentially expressed genes (DEGs), including 2937 upregulated genes and 2666 downregulated genes. Moreover, we also identified two dysregulated genes, RASA4 and SYNGAP1, among six Ras GTPase-activating proteins. High NF1 expression was associated with longer overall survival, while high SYNGAP1 expression showed a trend towards extended overall survival. Further analysis revealed the mutation frequency and copy number variations of Ras GTPase-activating proteins in various cancer samples. Additionally, DNA methylation analysis demonstrated a negative correlation between DNA methylation of Ras GTPase-activating proteins and their expression. Moreover, among Ras GTPase-activating proteins, we focused on SYNGAP1, and experimental validation confirmed that the overexpression of SYNGAP1 in READ significantly suppressed READ cell proliferation and increased apoptosis via regulating the Wnt/β-Catenin signaling pathway. These findings underscored the potential significance of SYNGAP1 in READ and provide new insights for further research and treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A reference for selecting an appropriate method for generating glioblastoma organoids from the application perspective Prognostic aging gene-based score for colorectal cancer: unveiling links to drug resistance, mutation burden, and personalized treatment strategies Evaluation of circulating plasma proteins in prostate cancer using mendelian randomization Clinical efficacy and immune response of BCL-2 inhibitors combined with hypomethylating agents in the treatment of acute myeloid leukemia Nanoquercetin based nanoformulations for triple negative breast cancer therapy and its role in overcoming drug resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1