耦合声弹介质中波传播的节点非连续伽勒金方法

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geophysical Prospecting Pub Date : 2024-04-27 DOI:10.1111/1365-2478.13520
Ruiqi Li, Yijie Zhang, Naihao Liu, Jinghuai Gao
{"title":"耦合声弹介质中波传播的节点非连续伽勒金方法","authors":"Ruiqi Li,&nbsp;Yijie Zhang,&nbsp;Naihao Liu,&nbsp;Jinghuai Gao","doi":"10.1111/1365-2478.13520","DOIUrl":null,"url":null,"abstract":"<p>The accurate numerical solution at an acoustic–elastic interface is important for offshore exploration. The solution requires careful implementation for the acoustic–elastic boundary conditions. In this work, we leverage a nodal discontinuous Galerkin method, in which the unstructured uniform triangular meshes are used for the model meshing and an explicit upwind numerical flux derived from the Riemann problem is adopted to handle the boundary conditions at the acoustic–elastic interface. Several numerical results are provided to assess the accuracy and convergence properties of this method. The convergence analysis is carried out in the coupled model with a flat interface, and the accuracy of the proposed method is verified in the curved interface coupled model. Finally, a more complex model with a salt dome, inspired by real geophysical applications, is carried out in this study. The numerical results demonstrate that the proposed nodal discontinuous Galerkin method is effective and accurate for dealing with the coupled acoustic–elastic media with complex geometries.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"72 6","pages":"2282-2299"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nodal discontinuous Galerkin method for wave propagation in coupled acoustic–elastic media\",\"authors\":\"Ruiqi Li,&nbsp;Yijie Zhang,&nbsp;Naihao Liu,&nbsp;Jinghuai Gao\",\"doi\":\"10.1111/1365-2478.13520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The accurate numerical solution at an acoustic–elastic interface is important for offshore exploration. The solution requires careful implementation for the acoustic–elastic boundary conditions. In this work, we leverage a nodal discontinuous Galerkin method, in which the unstructured uniform triangular meshes are used for the model meshing and an explicit upwind numerical flux derived from the Riemann problem is adopted to handle the boundary conditions at the acoustic–elastic interface. Several numerical results are provided to assess the accuracy and convergence properties of this method. The convergence analysis is carried out in the coupled model with a flat interface, and the accuracy of the proposed method is verified in the curved interface coupled model. Finally, a more complex model with a salt dome, inspired by real geophysical applications, is carried out in this study. The numerical results demonstrate that the proposed nodal discontinuous Galerkin method is effective and accurate for dealing with the coupled acoustic–elastic media with complex geometries.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":\"72 6\",\"pages\":\"2282-2299\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13520\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13520","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

声弹性界面的精确数值求解对于近海勘探非常重要。求解时需要仔细考虑声弹边界条件。在这项工作中,我们利用了节点非连续 Galerkin 方法,其中使用了非结构化均匀三角网格来划分模型网格,并采用了从黎曼问题中导出的显式上风数值通量来处理声弹性界面的边界条件。为评估该方法的准确性和收敛性,提供了一些数值结果。在平面界面耦合模型中进行了收敛分析,在曲面界面耦合模型中验证了所提方法的准确性。最后,本研究受实际地球物理应用的启发,建立了一个更为复杂的盐穹顶模型。数值结果表明,所提出的节点非连续 Galerkin 方法对于处理具有复杂几何形状的声弹耦合介质是有效和准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A nodal discontinuous Galerkin method for wave propagation in coupled acoustic–elastic media

The accurate numerical solution at an acoustic–elastic interface is important for offshore exploration. The solution requires careful implementation for the acoustic–elastic boundary conditions. In this work, we leverage a nodal discontinuous Galerkin method, in which the unstructured uniform triangular meshes are used for the model meshing and an explicit upwind numerical flux derived from the Riemann problem is adopted to handle the boundary conditions at the acoustic–elastic interface. Several numerical results are provided to assess the accuracy and convergence properties of this method. The convergence analysis is carried out in the coupled model with a flat interface, and the accuracy of the proposed method is verified in the curved interface coupled model. Finally, a more complex model with a salt dome, inspired by real geophysical applications, is carried out in this study. The numerical results demonstrate that the proposed nodal discontinuous Galerkin method is effective and accurate for dealing with the coupled acoustic–elastic media with complex geometries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
期刊最新文献
Issue Information Simultaneous inversion of four physical parameters of hydrate reservoir for high accuracy porosity estimation A mollifier approach to seismic data representation Analytic solutions for effective elastic moduli of isotropic solids containing oblate spheroid pores with critical porosity An efficient pseudoelastic pure P-mode wave equation and the implementation of the free surface boundary condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1