微藻膳食油替代物对尼罗罗非鱼(Oreochromis niloticus)生长、欧米加-3 沉积和肠道微生物组组成的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-29 DOI:10.1002/aff2.164
Sergio Trevi, Tamsyn M. Uren Webster, Sofia Consuegra, Carlos Garcia de Leaniz
{"title":"微藻膳食油替代物对尼罗罗非鱼(Oreochromis niloticus)生长、欧米加-3 沉积和肠道微生物组组成的影响","authors":"Sergio Trevi,&nbsp;Tamsyn M. Uren Webster,&nbsp;Sofia Consuegra,&nbsp;Carlos Garcia de Leaniz","doi":"10.1002/aff2.164","DOIUrl":null,"url":null,"abstract":"<p>Microalgae offer a sustainable source of omega − 3 fatty acids that can replace fish oil in aquafeeds, but the nutritional benefits are not always clear, particularly when microalgae are used as complete oil replacements in starter feeds. We compared the survival, growth, omega − 3 deposition and composition of the gut microbiota of juvenile mixed-sex Nile tilapia (<i>Oreochromis niloticus</i>) that had been fed over a 3-month period on six isonitrogenous, isolipidic and isocaloric aquafeeds that varied only on the contribution of fish oil, soya oil and microalgae (<i>Schizochytrium</i>) oil as lipid sources. Survival was not affected by diet, but fish fed a diet where the entire oil component (5%) was replaced by microalgae oil grew twice as fast as fish fed plant oil or a mixture of plant and fish oil. Dietary omega − 3 content was strongly correlated with omega − 3 deposition in the fish fillet. Complete replacement of fish oil by plant oil caused a significant decrease in the abundance of Peptostreptococcaceae and an increase in the abundance of Aeromonadaceae which is often associated with an inflammatory response in the fish gut. In contrast, when fish and soya oil in the reference diet were replaced by 100% microalgae oil, an increase in Mycobacteriaceae was observed. Our study indicates that <i>Schizochytrium</i> oil can be used to improve the growth of Nile tilapia and increase its omega − 3 content without any of the detrimental effects on the gut microbiome typically associated with some plant oil replacements.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aff2.164","citationCount":"0","resultStr":"{\"title\":\"Effects of micro-algae dietary oil replacement on growth, omega − 3 deposition and gut microbiome composition of Nile tilapia (Oreochromis niloticus)\",\"authors\":\"Sergio Trevi,&nbsp;Tamsyn M. Uren Webster,&nbsp;Sofia Consuegra,&nbsp;Carlos Garcia de Leaniz\",\"doi\":\"10.1002/aff2.164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microalgae offer a sustainable source of omega − 3 fatty acids that can replace fish oil in aquafeeds, but the nutritional benefits are not always clear, particularly when microalgae are used as complete oil replacements in starter feeds. We compared the survival, growth, omega − 3 deposition and composition of the gut microbiota of juvenile mixed-sex Nile tilapia (<i>Oreochromis niloticus</i>) that had been fed over a 3-month period on six isonitrogenous, isolipidic and isocaloric aquafeeds that varied only on the contribution of fish oil, soya oil and microalgae (<i>Schizochytrium</i>) oil as lipid sources. Survival was not affected by diet, but fish fed a diet where the entire oil component (5%) was replaced by microalgae oil grew twice as fast as fish fed plant oil or a mixture of plant and fish oil. Dietary omega − 3 content was strongly correlated with omega − 3 deposition in the fish fillet. Complete replacement of fish oil by plant oil caused a significant decrease in the abundance of Peptostreptococcaceae and an increase in the abundance of Aeromonadaceae which is often associated with an inflammatory response in the fish gut. In contrast, when fish and soya oil in the reference diet were replaced by 100% microalgae oil, an increase in Mycobacteriaceae was observed. Our study indicates that <i>Schizochytrium</i> oil can be used to improve the growth of Nile tilapia and increase its omega − 3 content without any of the detrimental effects on the gut microbiome typically associated with some plant oil replacements.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aff2.164\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aff2.164\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aff2.164","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

微藻提供了一种可替代水产饲料中鱼油的欧米伽-3 脂肪酸的可持续来源,但其营养益处并不总是很明显,尤其是当微藻被用作新鱼饲料中的完全油替代品时。我们比较了尼罗罗非鱼(Oreochromis niloticus)幼鱼的存活、生长、ω - 3沉积和肠道微生物群的组成,尼罗罗非鱼幼鱼在3个月的时间里喂食了6种等氮、等脂和等热的水产饲料,这些饲料仅在鱼油、大豆油和微藻(Schizochytrium)油作为脂质来源的比例上有所不同。鱼的存活率不受日粮影响,但喂食全部油脂成分(5%)由微藻油替代的日粮的鱼的生长速度是喂食植物油或植物油和鱼油混合物的鱼的两倍。膳食中欧米加-3的含量与鱼片中欧米加-3的沉积密切相关。用植物油完全替代鱼油会导致抑肽球菌属(Peptostreptococcaceae)数量显著减少,而通常与鱼肠道炎症反应有关的气单胞菌属(Aeromonadaceae)数量增加。与此相反,当参考日粮中的鱼油和大豆油被 100%的微藻油取代时,则观察到分枝杆菌属的数量有所增加。我们的研究表明,鱼腥草油可用来改善尼罗罗非鱼的生长状况并增加其欧米加-3 的含量,而不会对肠道微生物群造成任何不利影响,这通常与某些植物油替代品有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of micro-algae dietary oil replacement on growth, omega − 3 deposition and gut microbiome composition of Nile tilapia (Oreochromis niloticus)

Microalgae offer a sustainable source of omega − 3 fatty acids that can replace fish oil in aquafeeds, but the nutritional benefits are not always clear, particularly when microalgae are used as complete oil replacements in starter feeds. We compared the survival, growth, omega − 3 deposition and composition of the gut microbiota of juvenile mixed-sex Nile tilapia (Oreochromis niloticus) that had been fed over a 3-month period on six isonitrogenous, isolipidic and isocaloric aquafeeds that varied only on the contribution of fish oil, soya oil and microalgae (Schizochytrium) oil as lipid sources. Survival was not affected by diet, but fish fed a diet where the entire oil component (5%) was replaced by microalgae oil grew twice as fast as fish fed plant oil or a mixture of plant and fish oil. Dietary omega − 3 content was strongly correlated with omega − 3 deposition in the fish fillet. Complete replacement of fish oil by plant oil caused a significant decrease in the abundance of Peptostreptococcaceae and an increase in the abundance of Aeromonadaceae which is often associated with an inflammatory response in the fish gut. In contrast, when fish and soya oil in the reference diet were replaced by 100% microalgae oil, an increase in Mycobacteriaceae was observed. Our study indicates that Schizochytrium oil can be used to improve the growth of Nile tilapia and increase its omega − 3 content without any of the detrimental effects on the gut microbiome typically associated with some plant oil replacements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Prevalence and predictors of hand hygiene compliance in clinical, surgical and intensive care unit wards: results of a second cross-sectional study at the Umberto I teaching hospital of Rome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1