基于本体的数据访问、语义建模和数据湖的交叉点--语义数据管理概览

IF 2.1 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Web Semantics Pub Date : 2024-04-27 DOI:10.1016/j.websem.2024.100819
Sayed Hoseini , Johannes Theissen-Lipp , Christoph Quix
{"title":"基于本体的数据访问、语义建模和数据湖的交叉点--语义数据管理概览","authors":"Sayed Hoseini ,&nbsp;Johannes Theissen-Lipp ,&nbsp;Christoph Quix","doi":"10.1016/j.websem.2024.100819","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, data lakes emerged as a way to manage large amounts of heterogeneous data for modern data analytics. One way to prevent data lakes from turning into inoperable data swamps is semantic data management. Such approaches propose the linkage of metadata to knowledge graphs based on the Linked Data principles to provide more meaning and semantics to the data in the lake. Such a semantic layer may be utilized not only for data management but also to tackle the problem of data integration from heterogeneous sources, in order to make data access more expressive and interoperable. In this survey, we review recent approaches with a specific focus on the application within data lake systems and scalability to Big Data. We classify the approaches into (i) basic semantic data management, (ii) semantic modeling approaches for enriching metadata in data lakes, and (iii) methods for ontology-based data access. In each category, we cover the main techniques and their background, and compare latest research. Finally, we point out challenges for future work in this research area, which needs a closer integration of Big Data and Semantic Web technologies.</p></div>","PeriodicalId":49951,"journal":{"name":"Journal of Web Semantics","volume":"81 ","pages":"Article 100819"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1570826824000052/pdfft?md5=ba83860fb725179723385f42b29b9908&pid=1-s2.0-S1570826824000052-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A survey on semantic data management as intersection of ontology-based data access, semantic modeling and data lakes\",\"authors\":\"Sayed Hoseini ,&nbsp;Johannes Theissen-Lipp ,&nbsp;Christoph Quix\",\"doi\":\"10.1016/j.websem.2024.100819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, data lakes emerged as a way to manage large amounts of heterogeneous data for modern data analytics. One way to prevent data lakes from turning into inoperable data swamps is semantic data management. Such approaches propose the linkage of metadata to knowledge graphs based on the Linked Data principles to provide more meaning and semantics to the data in the lake. Such a semantic layer may be utilized not only for data management but also to tackle the problem of data integration from heterogeneous sources, in order to make data access more expressive and interoperable. In this survey, we review recent approaches with a specific focus on the application within data lake systems and scalability to Big Data. We classify the approaches into (i) basic semantic data management, (ii) semantic modeling approaches for enriching metadata in data lakes, and (iii) methods for ontology-based data access. In each category, we cover the main techniques and their background, and compare latest research. Finally, we point out challenges for future work in this research area, which needs a closer integration of Big Data and Semantic Web technologies.</p></div>\",\"PeriodicalId\":49951,\"journal\":{\"name\":\"Journal of Web Semantics\",\"volume\":\"81 \",\"pages\":\"Article 100819\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1570826824000052/pdfft?md5=ba83860fb725179723385f42b29b9908&pid=1-s2.0-S1570826824000052-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Semantics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570826824000052\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Semantics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826824000052","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,数据湖作为一种为现代数据分析管理大量异构数据的方式而出现。防止数据湖变成无法使用的数据沼泽的方法之一是语义数据管理。这种方法建议根据关联数据原则将元数据与知识图谱联系起来,为数据湖中的数据提供更多意义和语义。这样的语义层不仅可用于数据管理,还可用于解决异构来源的数据整合问题,从而使数据访问更具表现力和互操作性。在本调查中,我们回顾了最近的方法,特别关注数据湖系统内的应用和大数据的可扩展性。我们将这些方法分为:(i) 基本语义数据管理;(ii) 用于丰富数据湖中元数据的语义建模方法;(iii) 基于本体的数据访问方法。在每个类别中,我们都介绍了主要技术及其背景,并对最新研究进行了比较。最后,我们指出了这一研究领域未来工作的挑战,即需要更紧密地整合大数据和语义网技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A survey on semantic data management as intersection of ontology-based data access, semantic modeling and data lakes

In recent years, data lakes emerged as a way to manage large amounts of heterogeneous data for modern data analytics. One way to prevent data lakes from turning into inoperable data swamps is semantic data management. Such approaches propose the linkage of metadata to knowledge graphs based on the Linked Data principles to provide more meaning and semantics to the data in the lake. Such a semantic layer may be utilized not only for data management but also to tackle the problem of data integration from heterogeneous sources, in order to make data access more expressive and interoperable. In this survey, we review recent approaches with a specific focus on the application within data lake systems and scalability to Big Data. We classify the approaches into (i) basic semantic data management, (ii) semantic modeling approaches for enriching metadata in data lakes, and (iii) methods for ontology-based data access. In each category, we cover the main techniques and their background, and compare latest research. Finally, we point out challenges for future work in this research area, which needs a closer integration of Big Data and Semantic Web technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Web Semantics
Journal of Web Semantics 工程技术-计算机:人工智能
CiteScore
6.20
自引率
12.00%
发文量
22
审稿时长
14.6 weeks
期刊介绍: The Journal of Web Semantics is an interdisciplinary journal based on research and applications of various subject areas that contribute to the development of a knowledge-intensive and intelligent service Web. These areas include: knowledge technologies, ontology, agents, databases and the semantic grid, obviously disciplines like information retrieval, language technology, human-computer interaction and knowledge discovery are of major relevance as well. All aspects of the Semantic Web development are covered. The publication of large-scale experiments and their analysis is also encouraged to clearly illustrate scenarios and methods that introduce semantics into existing Web interfaces, contents and services. The journal emphasizes the publication of papers that combine theories, methods and experiments from different subject areas in order to deliver innovative semantic methods and applications.
期刊最新文献
Uniqorn: Unified question answering over RDF knowledge graphs and natural language text KAE: A property-based method for knowledge graph alignment and extension Multi-stream graph attention network for recommendation with knowledge graph Ontology design facilitating Wikibase integration — and a worked example for historical data Web3-DAO: An ontology for decentralized autonomous organizations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1