Chamara Sandeepa, Bartlomiej Siniarski, Nicolas Kourtellis, Shen Wang, Madhusanka Liyanage
{"title":"关于 B5G/6G 网络中个人和非个人数据隐私的调查","authors":"Chamara Sandeepa, Bartlomiej Siniarski, Nicolas Kourtellis, Shen Wang, Madhusanka Liyanage","doi":"10.1145/3662179","DOIUrl":null,"url":null,"abstract":"<p>The upcoming Beyond 5G (B5G) and 6G networks are expected to provide enhanced capabilities such as ultra-high data rates, dense connectivity, and high scalability. It opens many possibilities for a new generation of services driven by Artificial Intelligence (AI) and billions of interconnected smart devices. However, with this expected massive upgrade, the privacy of people, organisations, and states is becoming a rising concern. The recent introduction of privacy laws and regulations for personal and non-personal data signals that global awareness is emerging in the current privacy landscape. Yet, many gaps need to be identified in the case of two data types. If not detected, they can lead to significant privacy leakages and attacks that will affect billions of people and organisations who utilise B5G/6G. This survey is a comprehensive study of personal and non-personal data privacy in B5G/6G to identify the current progress and future directions to ensure data privacy. We provide a detailed comparison of the two data types and a set of related privacy goals for B5G/6G. Next, we bring data privacy issues with possible solutions. This paper also provides future directions to preserve personal and non-personal data privacy in future networks.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey on Privacy of Personal and Non-Personal Data in B5G/6G Networks\",\"authors\":\"Chamara Sandeepa, Bartlomiej Siniarski, Nicolas Kourtellis, Shen Wang, Madhusanka Liyanage\",\"doi\":\"10.1145/3662179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The upcoming Beyond 5G (B5G) and 6G networks are expected to provide enhanced capabilities such as ultra-high data rates, dense connectivity, and high scalability. It opens many possibilities for a new generation of services driven by Artificial Intelligence (AI) and billions of interconnected smart devices. However, with this expected massive upgrade, the privacy of people, organisations, and states is becoming a rising concern. The recent introduction of privacy laws and regulations for personal and non-personal data signals that global awareness is emerging in the current privacy landscape. Yet, many gaps need to be identified in the case of two data types. If not detected, they can lead to significant privacy leakages and attacks that will affect billions of people and organisations who utilise B5G/6G. This survey is a comprehensive study of personal and non-personal data privacy in B5G/6G to identify the current progress and future directions to ensure data privacy. We provide a detailed comparison of the two data types and a set of related privacy goals for B5G/6G. Next, we bring data privacy issues with possible solutions. This paper also provides future directions to preserve personal and non-personal data privacy in future networks.</p>\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3662179\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3662179","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A Survey on Privacy of Personal and Non-Personal Data in B5G/6G Networks
The upcoming Beyond 5G (B5G) and 6G networks are expected to provide enhanced capabilities such as ultra-high data rates, dense connectivity, and high scalability. It opens many possibilities for a new generation of services driven by Artificial Intelligence (AI) and billions of interconnected smart devices. However, with this expected massive upgrade, the privacy of people, organisations, and states is becoming a rising concern. The recent introduction of privacy laws and regulations for personal and non-personal data signals that global awareness is emerging in the current privacy landscape. Yet, many gaps need to be identified in the case of two data types. If not detected, they can lead to significant privacy leakages and attacks that will affect billions of people and organisations who utilise B5G/6G. This survey is a comprehensive study of personal and non-personal data privacy in B5G/6G to identify the current progress and future directions to ensure data privacy. We provide a detailed comparison of the two data types and a set of related privacy goals for B5G/6G. Next, we bring data privacy issues with possible solutions. This paper also provides future directions to preserve personal and non-personal data privacy in future networks.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.