用深度神经网络解决组合优化问题:调查

IF 6.6 1区 计算机科学 Q1 Multidisciplinary Tsinghua Science and Technology Pub Date : 2024-03-02 DOI:10.26599/TST.2023.9010076
Feng Wang;Qi He;Shicheng Li
{"title":"用深度神经网络解决组合优化问题:调查","authors":"Feng Wang;Qi He;Shicheng Li","doi":"10.26599/TST.2023.9010076","DOIUrl":null,"url":null,"abstract":"Combinatorial Optimization Problems (COPs) are a class of optimization problems that are commonly encountered in industrial production and everyday life. Over the last few decades, traditional algorithms, such as exact algorithms, approximate algorithms, and heuristic algorithms, have been proposed to solve COPs. However, as COPs in the real world become more complex, traditional algorithms struggle to generate optimal solutions in a limited amount of time. Since Deep Neural Networks (DNNs) are not heavily dependent on expert knowledge and are adequately flexible for generalization to various COPs, several DNN-based algorithms have been proposed in the last ten years for solving COPs. Herein, we categorize these algorithms into four classes and provide a brief overview of their applications in real-world problems.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10517929","citationCount":"0","resultStr":"{\"title\":\"Solving Combinatorial Optimization Problems with Deep Neural Network: A Survey\",\"authors\":\"Feng Wang;Qi He;Shicheng Li\",\"doi\":\"10.26599/TST.2023.9010076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combinatorial Optimization Problems (COPs) are a class of optimization problems that are commonly encountered in industrial production and everyday life. Over the last few decades, traditional algorithms, such as exact algorithms, approximate algorithms, and heuristic algorithms, have been proposed to solve COPs. However, as COPs in the real world become more complex, traditional algorithms struggle to generate optimal solutions in a limited amount of time. Since Deep Neural Networks (DNNs) are not heavily dependent on expert knowledge and are adequately flexible for generalization to various COPs, several DNN-based algorithms have been proposed in the last ten years for solving COPs. Herein, we categorize these algorithms into four classes and provide a brief overview of their applications in real-world problems.\",\"PeriodicalId\":48690,\"journal\":{\"name\":\"Tsinghua Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10517929\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsinghua Science and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10517929/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10517929/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

摘要

组合优化问题(COPs)是工业生产和日常生活中经常遇到的一类优化问题。过去几十年来,人们提出了精确算法、近似算法和启发式算法等传统算法来解决 COPs。然而,随着现实世界中的 COP 变得越来越复杂,传统算法很难在有限的时间内生成最优解。由于深度神经网络(DNN)并不严重依赖于专家知识,而且具有足够的灵活性,可以推广到各种 COP,因此在过去十年中,已经提出了几种基于 DNN 的解决 COP 的算法。在此,我们将这些算法分为四类,并简要介绍它们在实际问题中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solving Combinatorial Optimization Problems with Deep Neural Network: A Survey
Combinatorial Optimization Problems (COPs) are a class of optimization problems that are commonly encountered in industrial production and everyday life. Over the last few decades, traditional algorithms, such as exact algorithms, approximate algorithms, and heuristic algorithms, have been proposed to solve COPs. However, as COPs in the real world become more complex, traditional algorithms struggle to generate optimal solutions in a limited amount of time. Since Deep Neural Networks (DNNs) are not heavily dependent on expert knowledge and are adequately flexible for generalization to various COPs, several DNN-based algorithms have been proposed in the last ten years for solving COPs. Herein, we categorize these algorithms into four classes and provide a brief overview of their applications in real-world problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
期刊最新文献
Contents Front Cover LP-Rounding Based Algorithm for Capacitated Uniform Facility Location Problem with Soft Penalties A P4-Based Approach to Traffic Isolation and Bandwidth Management for 5G Network Slicing Quantum-Inspired Sensitive Data Measurement and Secure Transmission in 5G-Enabled Healthcare Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1