中国南方土壤中硒和镉的共富集及其对富硒土地安全利用的影响

IF 3.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geochemical Exploration Pub Date : 2024-05-01 DOI:10.1016/j.gexplo.2024.107487
Zhixuan Han , Yang Li , Ruiwei Zhao , Yuzhen Yang , Yuqun Cai , Haotian Lu
{"title":"中国南方土壤中硒和镉的共富集及其对富硒土地安全利用的影响","authors":"Zhixuan Han ,&nbsp;Yang Li ,&nbsp;Ruiwei Zhao ,&nbsp;Yuzhen Yang ,&nbsp;Yuqun Cai ,&nbsp;Haotian Lu","doi":"10.1016/j.gexplo.2024.107487","DOIUrl":null,"url":null,"abstract":"<div><p>Dietary deficiency of selenium (Se) is a global health threat related to low Se concentrations in crops. Southern China has abundant Se-rich land resources, but the cadmium (Cd) pollution problem is prominent, which may lead to Cd exceeding the safety standard in Se-rich crops. Therefore, it is important to delineate Se-rich land without Cd pollution in order to develop green Se-rich agriculture. Based on soil/sediment geochemical survey data covering 2.3 million km<sup>2</sup> of southern China, this study analysed the concentration and spatial distribution of Se and Cd, discussed their enrichment mechanisms and proposed suggestions for the safe use of Se-rich land. The results showed that the soil/sediments in southern China were significantly enriched in Se and Cd, and the median values were 0.31 mg·kg<sup>−1</sup> and 221 μg·kg<sup>−1</sup>, which were 1.8 times and 2.5 times the national soil background values, respectively. In addition, a significant positive correlation was observed between Se and Cd, indicating that Cd contamination in Se-rich soils frequently exceeded the pollution limit. According to statistics, Se-rich land accounted for 32.13 % of southern China. However, due to the co-enrichment of Se and Cd, areas without Cd pollution accounted for only one-third of the total Se-rich area. In particular, the areas with co-enrichment of Se<img>Cd are primarily distributed in Yunnan, Guizhou, Guangxi, western Hubei, northwestern Zhejiang, western Hunan, southern Hunan and northern Guangdong. The enrichment of Se is predominantly associated with parent rocks (black and carbonate rocks). At the same time, the enrichment of Cd is influenced by the parent rocks and Pb<img>Zn mineralisation and mining activities. Three recommendations for managing Se-rich land were proposed: imposing restrictions on the utilisation of heavily contaminated Se-rich land for agricultural production, adopting a rational approach towards utilising lightly polluted Se-rich land and actively promoting the development of Se-rich agriculture in uncontaminated Se-rich areas. In the future, it is necessary to develop technologies that simultaneously enhance Se absorption while inhibiting Cd absorption in order to safely exploit Se-rich lands affected by Cd pollution.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-enrichment of selenium and cadmium in soils of southern China and its implication for the safe utilisation of selenium-rich lands\",\"authors\":\"Zhixuan Han ,&nbsp;Yang Li ,&nbsp;Ruiwei Zhao ,&nbsp;Yuzhen Yang ,&nbsp;Yuqun Cai ,&nbsp;Haotian Lu\",\"doi\":\"10.1016/j.gexplo.2024.107487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dietary deficiency of selenium (Se) is a global health threat related to low Se concentrations in crops. Southern China has abundant Se-rich land resources, but the cadmium (Cd) pollution problem is prominent, which may lead to Cd exceeding the safety standard in Se-rich crops. Therefore, it is important to delineate Se-rich land without Cd pollution in order to develop green Se-rich agriculture. Based on soil/sediment geochemical survey data covering 2.3 million km<sup>2</sup> of southern China, this study analysed the concentration and spatial distribution of Se and Cd, discussed their enrichment mechanisms and proposed suggestions for the safe use of Se-rich land. The results showed that the soil/sediments in southern China were significantly enriched in Se and Cd, and the median values were 0.31 mg·kg<sup>−1</sup> and 221 μg·kg<sup>−1</sup>, which were 1.8 times and 2.5 times the national soil background values, respectively. In addition, a significant positive correlation was observed between Se and Cd, indicating that Cd contamination in Se-rich soils frequently exceeded the pollution limit. According to statistics, Se-rich land accounted for 32.13 % of southern China. However, due to the co-enrichment of Se and Cd, areas without Cd pollution accounted for only one-third of the total Se-rich area. In particular, the areas with co-enrichment of Se<img>Cd are primarily distributed in Yunnan, Guizhou, Guangxi, western Hubei, northwestern Zhejiang, western Hunan, southern Hunan and northern Guangdong. The enrichment of Se is predominantly associated with parent rocks (black and carbonate rocks). At the same time, the enrichment of Cd is influenced by the parent rocks and Pb<img>Zn mineralisation and mining activities. Three recommendations for managing Se-rich land were proposed: imposing restrictions on the utilisation of heavily contaminated Se-rich land for agricultural production, adopting a rational approach towards utilising lightly polluted Se-rich land and actively promoting the development of Se-rich agriculture in uncontaminated Se-rich areas. In the future, it is necessary to develop technologies that simultaneously enhance Se absorption while inhibiting Cd absorption in order to safely exploit Se-rich lands affected by Cd pollution.</p></div>\",\"PeriodicalId\":16336,\"journal\":{\"name\":\"Journal of Geochemical Exploration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geochemical Exploration\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375674224001031\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674224001031","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

膳食中硒(Se)的缺乏是一个全球性的健康威胁,这与农作物中硒浓度过低有关。中国南方拥有丰富的富硒土地资源,但镉污染问题突出,可能导致富硒作物中的镉含量超过安全标准。因此,必须划定无镉污染的富硒土地,发展绿色富硒农业。本研究基于中国南方 230 万平方公里的土壤/沉积物地球化学调查数据,分析了硒和镉的浓度和空间分布,探讨了其富集机制,并提出了安全利用富硒土地的建议。结果表明,中国南方土壤/沉积物中的硒和镉含量明显富集,中位值分别为 0.31 mg-kg-1 和 221 μg-kg-1,分别是全国土壤背景值的 1.8 倍和 2.5 倍。此外,Se 与 Cd 呈显著正相关,表明富含 Se 的土壤中 Cd 污染经常超标。据统计,中国南方富含硒的土地占 32.13%。然而,由于硒和镉的共富集,未受镉污染的地区仅占富硒总面积的三分之一。其中,硒镉共富集区主要分布在云南、贵州、广西、湖北西部、浙江西北部、湖南西部、湖南南部和广东北部。硒的富集主要与母岩(黑岩和碳酸盐岩)有关。同时,镉的富集受母岩、铅锌矿化和采矿活动的影响。针对富硒土地的管理提出了三项建议:限制将受严重污染的富硒土地用于农业生产;合理利用受轻度污染的富硒土地;积极推动在未受污染的富硒地区发展富硒农业。今后,有必要开发既能提高硒吸收能力,又能抑制镉吸收能力的技术,以安全开发受镉污染影响的富硒土地。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co-enrichment of selenium and cadmium in soils of southern China and its implication for the safe utilisation of selenium-rich lands

Dietary deficiency of selenium (Se) is a global health threat related to low Se concentrations in crops. Southern China has abundant Se-rich land resources, but the cadmium (Cd) pollution problem is prominent, which may lead to Cd exceeding the safety standard in Se-rich crops. Therefore, it is important to delineate Se-rich land without Cd pollution in order to develop green Se-rich agriculture. Based on soil/sediment geochemical survey data covering 2.3 million km2 of southern China, this study analysed the concentration and spatial distribution of Se and Cd, discussed their enrichment mechanisms and proposed suggestions for the safe use of Se-rich land. The results showed that the soil/sediments in southern China were significantly enriched in Se and Cd, and the median values were 0.31 mg·kg−1 and 221 μg·kg−1, which were 1.8 times and 2.5 times the national soil background values, respectively. In addition, a significant positive correlation was observed between Se and Cd, indicating that Cd contamination in Se-rich soils frequently exceeded the pollution limit. According to statistics, Se-rich land accounted for 32.13 % of southern China. However, due to the co-enrichment of Se and Cd, areas without Cd pollution accounted for only one-third of the total Se-rich area. In particular, the areas with co-enrichment of SeCd are primarily distributed in Yunnan, Guizhou, Guangxi, western Hubei, northwestern Zhejiang, western Hunan, southern Hunan and northern Guangdong. The enrichment of Se is predominantly associated with parent rocks (black and carbonate rocks). At the same time, the enrichment of Cd is influenced by the parent rocks and PbZn mineralisation and mining activities. Three recommendations for managing Se-rich land were proposed: imposing restrictions on the utilisation of heavily contaminated Se-rich land for agricultural production, adopting a rational approach towards utilising lightly polluted Se-rich land and actively promoting the development of Se-rich agriculture in uncontaminated Se-rich areas. In the future, it is necessary to develop technologies that simultaneously enhance Se absorption while inhibiting Cd absorption in order to safely exploit Se-rich lands affected by Cd pollution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geochemical Exploration
Journal of Geochemical Exploration 地学-地球化学与地球物理
CiteScore
7.40
自引率
7.70%
发文量
148
审稿时长
8.1 months
期刊介绍: Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics. Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to: define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas. analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation. evaluate effects of historical mining activities on the surface environment. trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices. assess and quantify natural and technogenic radioactivity in the environment. determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis. assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches. Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.
期刊最新文献
Fluid inclusion LA-ICP-MS constraint on hydrothermal evolution of proximal cassiterite-bearing quartz veins in the giant Gejiu orefield: Implications for controls on metallogenic potential of granite-related skarn system REE-bearing phosphate mineral chemistry for iron sulfide‑copper‑gold exploration: A study at Jericho, NW Queensland, Australia Assessment of potentially toxic elements in some wild edible plants of district Doda, Jammu and Kashmir, India Advanced exploration of rare metal mineralization through integrated remote sensing and geophysical analysis of structurally-controlled hydrothermal alterations Characterization of pegmatites in the La Motte Batholith area, Preissac-La Corne Plutonic Suite, Abitibi Subprovince and its implications for exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1