利用深度学习和汽车雷达实现陆地车辆自我速度估计

Paulo Ricardo Marques de Araujo;Aboelmagd Noureldin;Sidney Givigi
{"title":"利用深度学习和汽车雷达实现陆地车辆自我速度估计","authors":"Paulo Ricardo Marques de Araujo;Aboelmagd Noureldin;Sidney Givigi","doi":"10.1109/TRS.2024.3392439","DOIUrl":null,"url":null,"abstract":"This paper presents a deep learning framework for the estimation of land vehicle ego-velocity using Frequency Modulated Continuous Wave (FMCW) automotive radars, addressing the challenges of data sparsity and noise without the need for extrinsic radar calibration. By structuring radar scans into image-based and voxel-based networks, our approach demonstrates robust ego-velocity estimation across multiple sensor configurations and orientations. Experimental results from three distinct datasets—RadarScenes, NavINST, and MSC-RAD4R—validate the framework’s effectiveness, showing superior performance over traditional methods. The models’ adaptability to various sensor specifications and their computational efficiency highlight their potential for real-time applications. We made our implementation open-source at: \n<uri>https://github.com/paaraujo/deep-ego-velocity</uri>\n.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"460-470"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Land Vehicle Ego-Velocity Estimation Using Deep Learning and Automotive Radars\",\"authors\":\"Paulo Ricardo Marques de Araujo;Aboelmagd Noureldin;Sidney Givigi\",\"doi\":\"10.1109/TRS.2024.3392439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a deep learning framework for the estimation of land vehicle ego-velocity using Frequency Modulated Continuous Wave (FMCW) automotive radars, addressing the challenges of data sparsity and noise without the need for extrinsic radar calibration. By structuring radar scans into image-based and voxel-based networks, our approach demonstrates robust ego-velocity estimation across multiple sensor configurations and orientations. Experimental results from three distinct datasets—RadarScenes, NavINST, and MSC-RAD4R—validate the framework’s effectiveness, showing superior performance over traditional methods. The models’ adaptability to various sensor specifications and their computational efficiency highlight their potential for real-time applications. We made our implementation open-source at: \\n<uri>https://github.com/paaraujo/deep-ego-velocity</uri>\\n.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"2 \",\"pages\":\"460-470\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10506480/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10506480/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用频率调制连续波(FMCW)汽车雷达估算陆地车辆自我速度的深度学习框架,无需进行外部雷达校准即可解决数据稀疏性和噪声的挑战。通过将雷达扫描结构化为基于图像和基于体素的网络,我们的方法在多种传感器配置和方向上实现了稳健的自我速度估计。来自三个不同数据集(RadarScenes、NavINST 和 MSC-RAD4R)的实验结果验证了该框架的有效性,显示出优于传统方法的性能。模型对各种传感器规格的适应性及其计算效率凸显了其在实时应用中的潜力。我们将我们的实现开源于 https://github.com/paaraujo/deep-ego-velocity。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward Land Vehicle Ego-Velocity Estimation Using Deep Learning and Automotive Radars
This paper presents a deep learning framework for the estimation of land vehicle ego-velocity using Frequency Modulated Continuous Wave (FMCW) automotive radars, addressing the challenges of data sparsity and noise without the need for extrinsic radar calibration. By structuring radar scans into image-based and voxel-based networks, our approach demonstrates robust ego-velocity estimation across multiple sensor configurations and orientations. Experimental results from three distinct datasets—RadarScenes, NavINST, and MSC-RAD4R—validate the framework’s effectiveness, showing superior performance over traditional methods. The models’ adaptability to various sensor specifications and their computational efficiency highlight their potential for real-time applications. We made our implementation open-source at: https://github.com/paaraujo/deep-ego-velocity .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to “Engineering Constraints and Application Regimes of Quantum Radar” Range–Doppler Resolution Enhancement of Ground-Based Radar by Data Extrapolation Technique Polarization-Agile Jamming Suppression for Dual-Polarized Digital Array Radars Identification and High-Accuracy Range Estimation With Doppler Tags in Radar Applications Stepped-Frequency PMCW Waveforms for Automotive Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1