{"title":"是什么原因导致黑腹果蝇在第一和第二个羽化日的出现时间不同?","authors":"Yasuhiko Watari, Shin G. Goto, Yosuke Miyazaki, Izuru Kuroki, Kazuhiro Tanaka","doi":"10.1111/ens.12573","DOIUrl":null,"url":null,"abstract":"<p>One of the characteristics of the adult eclosion rhythm in <i>Drosophila melanogaster</i> is that adult emergence time differs greatly between the first and second eclosion days. The emergence time is in the middle of the light period on the first eclosion day, but immediately after light-on on the second day. We hypothesized that incomplete entrainment of the endogenous pacemaker to the light–dark (LD) cycle is responsible for the daily variation. Due to the very short pupal period of this species, adult emergence may occur before complete synchronization of the pacemaker with the external cycle on the first eclosion day. Therefore, the peak time on the first eclosion day may differ significantly from that on the second day. To verify this hypothesis, using pupae that had pupariated within 24 h, the time difference between the first and second peaks was compared in LD 12:12 or constant darkness at five different temperatures from 30 to 15°C. In both light regimes, the time difference decreased with decreasing temperature and extended pupal duration. The interval between the eclosion peaks approached 24 h, supporting this hypothesis. These results can be interpreted by using a two-oscillator model.</p>","PeriodicalId":11745,"journal":{"name":"Entomological Science","volume":"27 2","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What accounts for the difference in the emergence times of Drosophila melanogaster between the first and second eclosion days?\",\"authors\":\"Yasuhiko Watari, Shin G. Goto, Yosuke Miyazaki, Izuru Kuroki, Kazuhiro Tanaka\",\"doi\":\"10.1111/ens.12573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>One of the characteristics of the adult eclosion rhythm in <i>Drosophila melanogaster</i> is that adult emergence time differs greatly between the first and second eclosion days. The emergence time is in the middle of the light period on the first eclosion day, but immediately after light-on on the second day. We hypothesized that incomplete entrainment of the endogenous pacemaker to the light–dark (LD) cycle is responsible for the daily variation. Due to the very short pupal period of this species, adult emergence may occur before complete synchronization of the pacemaker with the external cycle on the first eclosion day. Therefore, the peak time on the first eclosion day may differ significantly from that on the second day. To verify this hypothesis, using pupae that had pupariated within 24 h, the time difference between the first and second peaks was compared in LD 12:12 or constant darkness at five different temperatures from 30 to 15°C. In both light regimes, the time difference decreased with decreasing temperature and extended pupal duration. The interval between the eclosion peaks approached 24 h, supporting this hypothesis. These results can be interpreted by using a two-oscillator model.</p>\",\"PeriodicalId\":11745,\"journal\":{\"name\":\"Entomological Science\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entomological Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ens.12573\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entomological Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ens.12573","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
What accounts for the difference in the emergence times of Drosophila melanogaster between the first and second eclosion days?
One of the characteristics of the adult eclosion rhythm in Drosophila melanogaster is that adult emergence time differs greatly between the first and second eclosion days. The emergence time is in the middle of the light period on the first eclosion day, but immediately after light-on on the second day. We hypothesized that incomplete entrainment of the endogenous pacemaker to the light–dark (LD) cycle is responsible for the daily variation. Due to the very short pupal period of this species, adult emergence may occur before complete synchronization of the pacemaker with the external cycle on the first eclosion day. Therefore, the peak time on the first eclosion day may differ significantly from that on the second day. To verify this hypothesis, using pupae that had pupariated within 24 h, the time difference between the first and second peaks was compared in LD 12:12 or constant darkness at five different temperatures from 30 to 15°C. In both light regimes, the time difference decreased with decreasing temperature and extended pupal duration. The interval between the eclosion peaks approached 24 h, supporting this hypothesis. These results can be interpreted by using a two-oscillator model.
期刊介绍:
Entomological Science is the official English language journal of the Entomological Society of Japan. The Journal publishes original research papers and reviews from any entomological discipline or from directly allied field in ecology, behavioral biology, physiology, biochemistry, development, genetics, systematics, morphology, evolution and general entomology. Papers of applied entomology will be considered for publication if they significantly advance in the field of entomological science in the opinion of the Editors and Editorial Board.