{"title":"用于控制电磁波的三维/四维打印可重构元表面","authors":"Eiyong Park;Minjae Lee;Heijun Jeong;Ratanak Phon;Kyounghwan Kim;Seyeon Park;Sungjoon Lim","doi":"10.1109/JPROC.2024.3391232","DOIUrl":null,"url":null,"abstract":"A comprehensive review of 3-D/4-D-printed reconfigurable metasurfaces (RMSs) is presented in this article. A metasurface (MS) demonstrates exceptional abilities for electromagnetic (EM) wave molding beyond that offered by conventional planar interfaces, and RMS provides MS with more diverse EM wave-control capabilities. RMSs are categorized by the type of external stimulus used for reconfiguration, such as electrical RMS, fluidic RMS, mechanical RMS, and thermal RMS. To implement these RMSs, it is important to understand the design and fabrication requirements as well as the EM characteristic of each RMS, including its advantages and disadvantages. In particular, except for electrical RMS, RMSs require complex 3-D structures or special materials that are difficult to implement with conventional subtractive manufacturing methods such as printed-circuit-board manufacturing. Recently, advanced 3-D/4-D printing technology has achieved high fabrication freedom and meets the design and fabrication requirements of each type of RMS. In this article, we introduce representative RMSs with the development of 3-D/4-D printing technology and materials. Furthermore, current issues of RMSs based on 3-D/4-D printing technology and future directions are described.","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 8","pages":"1000-1032"},"PeriodicalIF":23.2000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3-D/4-D-Printed Reconfigurable Metasurfaces for Controlling Electromagnetic Waves\",\"authors\":\"Eiyong Park;Minjae Lee;Heijun Jeong;Ratanak Phon;Kyounghwan Kim;Seyeon Park;Sungjoon Lim\",\"doi\":\"10.1109/JPROC.2024.3391232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comprehensive review of 3-D/4-D-printed reconfigurable metasurfaces (RMSs) is presented in this article. A metasurface (MS) demonstrates exceptional abilities for electromagnetic (EM) wave molding beyond that offered by conventional planar interfaces, and RMS provides MS with more diverse EM wave-control capabilities. RMSs are categorized by the type of external stimulus used for reconfiguration, such as electrical RMS, fluidic RMS, mechanical RMS, and thermal RMS. To implement these RMSs, it is important to understand the design and fabrication requirements as well as the EM characteristic of each RMS, including its advantages and disadvantages. In particular, except for electrical RMS, RMSs require complex 3-D structures or special materials that are difficult to implement with conventional subtractive manufacturing methods such as printed-circuit-board manufacturing. Recently, advanced 3-D/4-D printing technology has achieved high fabrication freedom and meets the design and fabrication requirements of each type of RMS. In this article, we introduce representative RMSs with the development of 3-D/4-D printing technology and materials. Furthermore, current issues of RMSs based on 3-D/4-D printing technology and future directions are described.\",\"PeriodicalId\":20556,\"journal\":{\"name\":\"Proceedings of the IEEE\",\"volume\":\"112 8\",\"pages\":\"1000-1032\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10517411/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10517411/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
3-D/4-D-Printed Reconfigurable Metasurfaces for Controlling Electromagnetic Waves
A comprehensive review of 3-D/4-D-printed reconfigurable metasurfaces (RMSs) is presented in this article. A metasurface (MS) demonstrates exceptional abilities for electromagnetic (EM) wave molding beyond that offered by conventional planar interfaces, and RMS provides MS with more diverse EM wave-control capabilities. RMSs are categorized by the type of external stimulus used for reconfiguration, such as electrical RMS, fluidic RMS, mechanical RMS, and thermal RMS. To implement these RMSs, it is important to understand the design and fabrication requirements as well as the EM characteristic of each RMS, including its advantages and disadvantages. In particular, except for electrical RMS, RMSs require complex 3-D structures or special materials that are difficult to implement with conventional subtractive manufacturing methods such as printed-circuit-board manufacturing. Recently, advanced 3-D/4-D printing technology has achieved high fabrication freedom and meets the design and fabrication requirements of each type of RMS. In this article, we introduce representative RMSs with the development of 3-D/4-D printing technology and materials. Furthermore, current issues of RMSs based on 3-D/4-D printing technology and future directions are described.
期刊介绍:
Proceedings of the IEEE is the leading journal to provide in-depth review, survey, and tutorial coverage of the technical developments in electronics, electrical and computer engineering, and computer science. Consistently ranked as one of the top journals by Impact Factor, Article Influence Score and more, the journal serves as a trusted resource for engineers around the world.