Hassan Gharoun, Fereshteh Momenifar, Fang Chen, Amir Gandomi
{"title":"用于少量学习的元学习方法:最新进展概览","authors":"Hassan Gharoun, Fereshteh Momenifar, Fang Chen, Amir Gandomi","doi":"10.1145/3659943","DOIUrl":null,"url":null,"abstract":"<p>Despite its astounding success in learning deeper multi-dimensional data, the performance of deep learning declines on new unseen tasks mainly due to its focus on same-distribution prediction. Moreover, deep learning is notorious for poor generalization from few samples. Meta-learning is a promising approach that addresses these issues by adapting to new tasks with few-shot datasets. This survey first briefly introduces meta-learning and then investigates state-of-the-art meta-learning methods and recent advances in: (i) metric-based, (ii) memory-based, (iii), and learning-based methods. Finally, current challenges and insights for future researches are discussed.</p>","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-learning approaches for few-shot learning: A survey of recent advances\",\"authors\":\"Hassan Gharoun, Fereshteh Momenifar, Fang Chen, Amir Gandomi\",\"doi\":\"10.1145/3659943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite its astounding success in learning deeper multi-dimensional data, the performance of deep learning declines on new unseen tasks mainly due to its focus on same-distribution prediction. Moreover, deep learning is notorious for poor generalization from few samples. Meta-learning is a promising approach that addresses these issues by adapting to new tasks with few-shot datasets. This survey first briefly introduces meta-learning and then investigates state-of-the-art meta-learning methods and recent advances in: (i) metric-based, (ii) memory-based, (iii), and learning-based methods. Finally, current challenges and insights for future researches are discussed.</p>\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3659943\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3659943","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Meta-learning approaches for few-shot learning: A survey of recent advances
Despite its astounding success in learning deeper multi-dimensional data, the performance of deep learning declines on new unseen tasks mainly due to its focus on same-distribution prediction. Moreover, deep learning is notorious for poor generalization from few samples. Meta-learning is a promising approach that addresses these issues by adapting to new tasks with few-shot datasets. This survey first briefly introduces meta-learning and then investigates state-of-the-art meta-learning methods and recent advances in: (i) metric-based, (ii) memory-based, (iii), and learning-based methods. Finally, current challenges and insights for future researches are discussed.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.