William A. Miller-Little, Xing Chen, Vanessa Salazar, Caini Liu, Katarzyna Bulek, Julie Y. Zhou, Xiao Li, Olaf Stüve, Thaddeus Stappenbeck, George Dubyak, Junjie Zhao, Xiaoxia Li
{"title":"TH17内在IL-1β-STAT5轴驱动自身免疫性神经炎症中的类固醇抗药性","authors":"William A. Miller-Little, Xing Chen, Vanessa Salazar, Caini Liu, Katarzyna Bulek, Julie Y. Zhou, Xiao Li, Olaf Stüve, Thaddeus Stappenbeck, George Dubyak, Junjie Zhao, Xiaoxia Li","doi":"10.1126/sciimmunol.abq1558","DOIUrl":null,"url":null,"abstract":"<div >Steroid resistance poses a major challenge for the management of autoimmune neuroinflammation. T helper 17 (T<sub>H</sub>17) cells are widely implicated in the pathology of steroid resistance; however, the underlying mechanisms are unknown. In this study, we identified that interleukin-1 receptor (IL-1R) blockade rendered experimental autoimmune encephalomyelitis (EAE) mice sensitive to dexamethasone (Dex) treatment. Interleukin-1β (IL-1β) induced a signal transducer and activator of transcription 5 (STAT5)–mediated steroid-resistant transcriptional program in T<sub>H</sub>17 cells, which promoted inflammatory cytokine production and suppressed Dex-induced anti-inflammatory genes. T<sub>H</sub>17-specific deletion of STAT5 ablated the IL-1β–induced steroid-resistant transcriptional program and rendered EAE mice sensitive to Dex treatment. IL-1β synergized with Dex to promote the STAT5-dependent expression of CD69 and the development of central nervous system (CNS)–resident CD69<sup>+</sup> T<sub>H</sub>17 cells. Combined IL-1R blockade and Dex treatment ablated CNS-resident T<sub>H</sub>17 cells, reduced EAE severity, and prevented relapse. CD69<sup>+</sup> tissue-resident T<sub>H</sub>17 cells were also detected in brain lesions of patients with multiple sclerosis. These findings (i) demonstrate that IL-1β–STAT5 signaling in T<sub>H</sub>17 cells mediates steroid resistance and (ii) identify a therapeutic strategy for reversing steroid resistance in T<sub>H</sub>17-mediated CNS autoimmunity.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"9 95","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A TH17-intrinsic IL-1β–STAT5 axis drives steroid resistance in autoimmune neuroinflammation\",\"authors\":\"William A. Miller-Little, Xing Chen, Vanessa Salazar, Caini Liu, Katarzyna Bulek, Julie Y. Zhou, Xiao Li, Olaf Stüve, Thaddeus Stappenbeck, George Dubyak, Junjie Zhao, Xiaoxia Li\",\"doi\":\"10.1126/sciimmunol.abq1558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Steroid resistance poses a major challenge for the management of autoimmune neuroinflammation. T helper 17 (T<sub>H</sub>17) cells are widely implicated in the pathology of steroid resistance; however, the underlying mechanisms are unknown. In this study, we identified that interleukin-1 receptor (IL-1R) blockade rendered experimental autoimmune encephalomyelitis (EAE) mice sensitive to dexamethasone (Dex) treatment. Interleukin-1β (IL-1β) induced a signal transducer and activator of transcription 5 (STAT5)–mediated steroid-resistant transcriptional program in T<sub>H</sub>17 cells, which promoted inflammatory cytokine production and suppressed Dex-induced anti-inflammatory genes. T<sub>H</sub>17-specific deletion of STAT5 ablated the IL-1β–induced steroid-resistant transcriptional program and rendered EAE mice sensitive to Dex treatment. IL-1β synergized with Dex to promote the STAT5-dependent expression of CD69 and the development of central nervous system (CNS)–resident CD69<sup>+</sup> T<sub>H</sub>17 cells. Combined IL-1R blockade and Dex treatment ablated CNS-resident T<sub>H</sub>17 cells, reduced EAE severity, and prevented relapse. CD69<sup>+</sup> tissue-resident T<sub>H</sub>17 cells were also detected in brain lesions of patients with multiple sclerosis. These findings (i) demonstrate that IL-1β–STAT5 signaling in T<sub>H</sub>17 cells mediates steroid resistance and (ii) identify a therapeutic strategy for reversing steroid resistance in T<sub>H</sub>17-mediated CNS autoimmunity.</div>\",\"PeriodicalId\":21734,\"journal\":{\"name\":\"Science Immunology\",\"volume\":\"9 95\",\"pages\":\"\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciimmunol.abq1558\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/sciimmunol.abq1558","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
A TH17-intrinsic IL-1β–STAT5 axis drives steroid resistance in autoimmune neuroinflammation
Steroid resistance poses a major challenge for the management of autoimmune neuroinflammation. T helper 17 (TH17) cells are widely implicated in the pathology of steroid resistance; however, the underlying mechanisms are unknown. In this study, we identified that interleukin-1 receptor (IL-1R) blockade rendered experimental autoimmune encephalomyelitis (EAE) mice sensitive to dexamethasone (Dex) treatment. Interleukin-1β (IL-1β) induced a signal transducer and activator of transcription 5 (STAT5)–mediated steroid-resistant transcriptional program in TH17 cells, which promoted inflammatory cytokine production and suppressed Dex-induced anti-inflammatory genes. TH17-specific deletion of STAT5 ablated the IL-1β–induced steroid-resistant transcriptional program and rendered EAE mice sensitive to Dex treatment. IL-1β synergized with Dex to promote the STAT5-dependent expression of CD69 and the development of central nervous system (CNS)–resident CD69+ TH17 cells. Combined IL-1R blockade and Dex treatment ablated CNS-resident TH17 cells, reduced EAE severity, and prevented relapse. CD69+ tissue-resident TH17 cells were also detected in brain lesions of patients with multiple sclerosis. These findings (i) demonstrate that IL-1β–STAT5 signaling in TH17 cells mediates steroid resistance and (ii) identify a therapeutic strategy for reversing steroid resistance in TH17-mediated CNS autoimmunity.
期刊介绍:
Science Immunology is a peer-reviewed journal that publishes original research articles in the field of immunology. The journal encourages the submission of research findings from all areas of immunology, including studies on innate and adaptive immunity, immune cell development and differentiation, immunogenomics, systems immunology, structural immunology, antigen presentation, immunometabolism, and mucosal immunology. Additionally, the journal covers research on immune contributions to health and disease, such as host defense, inflammation, cancer immunology, autoimmunity, allergy, transplantation, and immunodeficiency. Science Immunology maintains the same high-quality standard as other journals in the Science family and aims to facilitate understanding of the immune system by showcasing innovative advances in immunology research from all organisms and model systems, including humans.