{"title":"在黄土覆盖的地形中观察到的含金属纳米颗粒的特征:对勘探的影响","authors":"Yuexin Lu, Bimin Zhang, Xueqiu Wang, Hanliang Liu, Jian Zhou","doi":"10.1016/j.gexplo.2024.107488","DOIUrl":null,"url":null,"abstract":"<div><p>The recent depletion of mineral resources near the Earth's surface has led to a shift in mineral exploration toward concealed deposits in covered terrain. Consequently, significant attention has been directed toward metal-bearing nanoparticles in the soil above such deposits to gain insights into the composition of concealed ore bodies.</p><p>In this study, the characteristics (type, size, shape, chemical composition, and aggregation) of metal-bearing nanoparticles in ore samples of the Zhonghedi Ag-Pb-Zn polymetallic deposit and their overlying loess were systematically analyzed using transmission electron microscopy. Numerous nanoparticles containing Ag, Au, Cu, Pb, Zn, Fe, Mo, and other metallic elements were observed in the loess overlying the deposits as well as the ore samples. These nanoparticles exhibit a well-defined crystal shape, suggesting their primary particle nature. Moreover, the nanoparticles in the loess and ore samples share similarities in element distribution, size, and type, demonstrating their homologous nature. However, ore-related metal-bearing nanoparticles were not detected in samples collected from the background areas. Most metal-bearing nanoparticles in loess, excluding native particles, were oxides and sulfates, which may be attributed to oxidation of the native metal particles near the surface where oxygen fugacity increases. The elemental mapping of the nanoparticles showed that the ore-forming elements had the same distribution patterns and element assemblages to the ore material. These results indicate that metal-bearing nanoparticles in the loess have likely relationships with concealed ore bodies. Accordingly, the metal-bearing nanoparticles in the loess can provide information about concealed ore deposits, explain surface geochemical anomalies, and improve prospecting accuracy as a vector to mineralization.</p><p>Routinely finding nanoparticles in transported cover remains a challenge. However, this study shows it is viable and marks substantial progress in our knowledge and comprehension of metal-bearing nanoparticles in loess-covered terrain. Evidence of their presence and association with concealed ore bodies contributes significantly to our understanding of mineral exploration processes and offers new avenues for future research and practical applications.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"262 ","pages":"Article 107488"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of metal-bearing nanoparticles observed in loess-covered terrain: Implications for prospecting\",\"authors\":\"Yuexin Lu, Bimin Zhang, Xueqiu Wang, Hanliang Liu, Jian Zhou\",\"doi\":\"10.1016/j.gexplo.2024.107488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recent depletion of mineral resources near the Earth's surface has led to a shift in mineral exploration toward concealed deposits in covered terrain. Consequently, significant attention has been directed toward metal-bearing nanoparticles in the soil above such deposits to gain insights into the composition of concealed ore bodies.</p><p>In this study, the characteristics (type, size, shape, chemical composition, and aggregation) of metal-bearing nanoparticles in ore samples of the Zhonghedi Ag-Pb-Zn polymetallic deposit and their overlying loess were systematically analyzed using transmission electron microscopy. Numerous nanoparticles containing Ag, Au, Cu, Pb, Zn, Fe, Mo, and other metallic elements were observed in the loess overlying the deposits as well as the ore samples. These nanoparticles exhibit a well-defined crystal shape, suggesting their primary particle nature. Moreover, the nanoparticles in the loess and ore samples share similarities in element distribution, size, and type, demonstrating their homologous nature. However, ore-related metal-bearing nanoparticles were not detected in samples collected from the background areas. Most metal-bearing nanoparticles in loess, excluding native particles, were oxides and sulfates, which may be attributed to oxidation of the native metal particles near the surface where oxygen fugacity increases. The elemental mapping of the nanoparticles showed that the ore-forming elements had the same distribution patterns and element assemblages to the ore material. These results indicate that metal-bearing nanoparticles in the loess have likely relationships with concealed ore bodies. Accordingly, the metal-bearing nanoparticles in the loess can provide information about concealed ore deposits, explain surface geochemical anomalies, and improve prospecting accuracy as a vector to mineralization.</p><p>Routinely finding nanoparticles in transported cover remains a challenge. However, this study shows it is viable and marks substantial progress in our knowledge and comprehension of metal-bearing nanoparticles in loess-covered terrain. Evidence of their presence and association with concealed ore bodies contributes significantly to our understanding of mineral exploration processes and offers new avenues for future research and practical applications.</p></div>\",\"PeriodicalId\":16336,\"journal\":{\"name\":\"Journal of Geochemical Exploration\",\"volume\":\"262 \",\"pages\":\"Article 107488\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geochemical Exploration\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375674224001043\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674224001043","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Characterization of metal-bearing nanoparticles observed in loess-covered terrain: Implications for prospecting
The recent depletion of mineral resources near the Earth's surface has led to a shift in mineral exploration toward concealed deposits in covered terrain. Consequently, significant attention has been directed toward metal-bearing nanoparticles in the soil above such deposits to gain insights into the composition of concealed ore bodies.
In this study, the characteristics (type, size, shape, chemical composition, and aggregation) of metal-bearing nanoparticles in ore samples of the Zhonghedi Ag-Pb-Zn polymetallic deposit and their overlying loess were systematically analyzed using transmission electron microscopy. Numerous nanoparticles containing Ag, Au, Cu, Pb, Zn, Fe, Mo, and other metallic elements were observed in the loess overlying the deposits as well as the ore samples. These nanoparticles exhibit a well-defined crystal shape, suggesting their primary particle nature. Moreover, the nanoparticles in the loess and ore samples share similarities in element distribution, size, and type, demonstrating their homologous nature. However, ore-related metal-bearing nanoparticles were not detected in samples collected from the background areas. Most metal-bearing nanoparticles in loess, excluding native particles, were oxides and sulfates, which may be attributed to oxidation of the native metal particles near the surface where oxygen fugacity increases. The elemental mapping of the nanoparticles showed that the ore-forming elements had the same distribution patterns and element assemblages to the ore material. These results indicate that metal-bearing nanoparticles in the loess have likely relationships with concealed ore bodies. Accordingly, the metal-bearing nanoparticles in the loess can provide information about concealed ore deposits, explain surface geochemical anomalies, and improve prospecting accuracy as a vector to mineralization.
Routinely finding nanoparticles in transported cover remains a challenge. However, this study shows it is viable and marks substantial progress in our knowledge and comprehension of metal-bearing nanoparticles in loess-covered terrain. Evidence of their presence and association with concealed ore bodies contributes significantly to our understanding of mineral exploration processes and offers new avenues for future research and practical applications.
期刊介绍:
Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics.
Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to:
define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas.
analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation.
evaluate effects of historical mining activities on the surface environment.
trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices.
assess and quantify natural and technogenic radioactivity in the environment.
determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis.
assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches.
Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.