{"title":"钙网蛋白通过调节 TGF-beta 诱导的 Smad 信号调节肝星状细胞活化","authors":"Chien-Chih Chen , Li-Wen Hsu , Kuang-Den Chen , King-Wah Chiu , Chao-Pin Kung , Shu-Rong Li , Chao-Long Chen , Kuang-Tzu Huang","doi":"10.1016/j.ceca.2024.102895","DOIUrl":null,"url":null,"abstract":"<div><p>Liver fibrosis is characterized by excessive deposition of extracellular matrix (ECM) as a wound healing process. Activated hepatic stellate cells (HpSCs) are the major producer of the ECM and play a central role in liver fibrogenesis. It has been widely accepted that elimination of activated HpSCs or reversion to a quiescent state can be a feasible strategy for resolving the disease, further highlighting the urgent need for novel therapeutic targets. Calreticulin (CRT) is a molecular chaperone that normally resides in the endoplasmic reticulum (ER), important in protein folding and trafficking through the secretory pathway. CRT also plays a critical role in calcium (Ca<sup>2+</sup>) homeostasis, with its Ca<sup>2+</sup> storage capacity. In the current study, we aimed to demonstrate its function in directing HpSC activation. In a mouse liver injury model, CRT was up-regulated in HpSCs. In cellular experiments, we further showed that this activation was through modulating the canonical TGF-β signaling. As down-regulation of CRT in HpSCs elevated intracellular Ca<sup>2+</sup> levels through a form of Ca<sup>2+</sup> influx, named store-operated Ca<sup>2+</sup> entry (SOCE), we examined whether moderating SOCE affected TGF-β signaling. Interestingly, blocking SOCE had little effect on TGF-β-induced gene expression. In contrast, inhibition of ER Ca<sup>2+</sup> release using the inositol trisphosphate receptor inhibitor 2-APB increased TGF-β signaling. Treatment with 2-APB did not alter SOCE but decreased intracellular Ca<sup>2+</sup> at the basal level. Indeed, adjusting Ca<sup>2+</sup> concentrations by EGTA or BAPTA-AM chelation further enhanced TGF-β-induced signaling. Our results suggest a crucial role of CRT in the liver fibrogenic process through modulating Ca<sup>2+</sup> concentrations and TGF-β signaling in HpSCs, which may provide new information and help advance the current discoveries for liver fibrosis.</p></div>","PeriodicalId":9678,"journal":{"name":"Cell calcium","volume":"121 ","pages":"Article 102895"},"PeriodicalIF":4.3000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calreticulin regulates hepatic stellate cell activation through modulating TGF-beta-induced Smad signaling\",\"authors\":\"Chien-Chih Chen , Li-Wen Hsu , Kuang-Den Chen , King-Wah Chiu , Chao-Pin Kung , Shu-Rong Li , Chao-Long Chen , Kuang-Tzu Huang\",\"doi\":\"10.1016/j.ceca.2024.102895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Liver fibrosis is characterized by excessive deposition of extracellular matrix (ECM) as a wound healing process. Activated hepatic stellate cells (HpSCs) are the major producer of the ECM and play a central role in liver fibrogenesis. It has been widely accepted that elimination of activated HpSCs or reversion to a quiescent state can be a feasible strategy for resolving the disease, further highlighting the urgent need for novel therapeutic targets. Calreticulin (CRT) is a molecular chaperone that normally resides in the endoplasmic reticulum (ER), important in protein folding and trafficking through the secretory pathway. CRT also plays a critical role in calcium (Ca<sup>2+</sup>) homeostasis, with its Ca<sup>2+</sup> storage capacity. In the current study, we aimed to demonstrate its function in directing HpSC activation. In a mouse liver injury model, CRT was up-regulated in HpSCs. In cellular experiments, we further showed that this activation was through modulating the canonical TGF-β signaling. As down-regulation of CRT in HpSCs elevated intracellular Ca<sup>2+</sup> levels through a form of Ca<sup>2+</sup> influx, named store-operated Ca<sup>2+</sup> entry (SOCE), we examined whether moderating SOCE affected TGF-β signaling. Interestingly, blocking SOCE had little effect on TGF-β-induced gene expression. In contrast, inhibition of ER Ca<sup>2+</sup> release using the inositol trisphosphate receptor inhibitor 2-APB increased TGF-β signaling. Treatment with 2-APB did not alter SOCE but decreased intracellular Ca<sup>2+</sup> at the basal level. Indeed, adjusting Ca<sup>2+</sup> concentrations by EGTA or BAPTA-AM chelation further enhanced TGF-β-induced signaling. Our results suggest a crucial role of CRT in the liver fibrogenic process through modulating Ca<sup>2+</sup> concentrations and TGF-β signaling in HpSCs, which may provide new information and help advance the current discoveries for liver fibrosis.</p></div>\",\"PeriodicalId\":9678,\"journal\":{\"name\":\"Cell calcium\",\"volume\":\"121 \",\"pages\":\"Article 102895\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell calcium\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143416024000538\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell calcium","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143416024000538","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Liver fibrosis is characterized by excessive deposition of extracellular matrix (ECM) as a wound healing process. Activated hepatic stellate cells (HpSCs) are the major producer of the ECM and play a central role in liver fibrogenesis. It has been widely accepted that elimination of activated HpSCs or reversion to a quiescent state can be a feasible strategy for resolving the disease, further highlighting the urgent need for novel therapeutic targets. Calreticulin (CRT) is a molecular chaperone that normally resides in the endoplasmic reticulum (ER), important in protein folding and trafficking through the secretory pathway. CRT also plays a critical role in calcium (Ca2+) homeostasis, with its Ca2+ storage capacity. In the current study, we aimed to demonstrate its function in directing HpSC activation. In a mouse liver injury model, CRT was up-regulated in HpSCs. In cellular experiments, we further showed that this activation was through modulating the canonical TGF-β signaling. As down-regulation of CRT in HpSCs elevated intracellular Ca2+ levels through a form of Ca2+ influx, named store-operated Ca2+ entry (SOCE), we examined whether moderating SOCE affected TGF-β signaling. Interestingly, blocking SOCE had little effect on TGF-β-induced gene expression. In contrast, inhibition of ER Ca2+ release using the inositol trisphosphate receptor inhibitor 2-APB increased TGF-β signaling. Treatment with 2-APB did not alter SOCE but decreased intracellular Ca2+ at the basal level. Indeed, adjusting Ca2+ concentrations by EGTA or BAPTA-AM chelation further enhanced TGF-β-induced signaling. Our results suggest a crucial role of CRT in the liver fibrogenic process through modulating Ca2+ concentrations and TGF-β signaling in HpSCs, which may provide new information and help advance the current discoveries for liver fibrosis.
期刊介绍:
Cell Calcium covers the field of calcium metabolism and signalling in living systems, from aspects including inorganic chemistry, physiology, molecular biology and pathology. Topic themes include:
Roles of calcium in regulating cellular events such as apoptosis, necrosis and organelle remodelling
Influence of calcium regulation in affecting health and disease outcomes