与磺胺多辛共轭的三硫醇二钌复合物对弓形虫寄生虫的体内外活性

Ghalia Boubaker , Alice Bernal , Anitha Vigneswaran , Dennis Imhof , Maria Cristina Ferreira de Sousa , Kai Pascal Alexander Hänggeli , Noé Haudenschild , Julien Furrer , Emilia Păunescu , Oksana Desiatkina , Andrew Hemphill
{"title":"与磺胺多辛共轭的三硫醇二钌复合物对弓形虫寄生虫的体内外活性","authors":"Ghalia Boubaker ,&nbsp;Alice Bernal ,&nbsp;Anitha Vigneswaran ,&nbsp;Dennis Imhof ,&nbsp;Maria Cristina Ferreira de Sousa ,&nbsp;Kai Pascal Alexander Hänggeli ,&nbsp;Noé Haudenschild ,&nbsp;Julien Furrer ,&nbsp;Emilia Păunescu ,&nbsp;Oksana Desiatkina ,&nbsp;Andrew Hemphill","doi":"10.1016/j.ijpddr.2024.100544","DOIUrl":null,"url":null,"abstract":"<div><p>Organometallic compounds, including Ruthenium complexes, have been widely developed as anti-cancer chemotherapeutics, but have also attracted much interest as potential anti-parasitic drugs. Recently hybrid drugs composed of organometallic Ruthenium moieties that were complexed to different antimicrobial agents were synthesized. One of these compounds, a trithiolato-diRuthenium complex (RU) conjugated to sulfadoxine (SDX), inhibited proliferation of <em>Toxoplasma gondii</em> tachyzoites grown in human foreskin fibroblast (HFF) monolayers with an IC<sub>50</sub> &lt; 150 nM, while SDX and the non-modified RU complex applied either individually or as an equimolar mixture were much less potent. In addition, conjugation of SDX to RU lead to decreased HFF cytotoxicity. RU-SDX did not impair the <em>in vitro</em> proliferation of murine splenocytes at concentrations ranging from 0.1 to 0.5 μM but had an impact at 2 μM, and induced zebrafish embryotoxicity at 20 μM, but not at 2 or 0.2 μM. RU-SDX acted parasitostatic but not parasiticidal, and induced transient ultrastructural changes in the mitochondrial matrix of tachyzoites early during treatment. While other compounds that target the mitochondrion such as the uncouplers FCCP and CCCP and another trithiolato-Ruthenium complex conjugated to adenine affected the mitochondrial membrane potential, no such effect was detected for RU-SDX. Evaluation of the <em>in vivo</em> efficacy of RU-SDX in a murine <em>T. gondii</em> oocyst infection model comprised of non-pregnant outbred CD1 mice showed no effects on the cerebral parasite burden, but reduced parasite load in the eyes and in heart tissue.</p></div>","PeriodicalId":13775,"journal":{"name":"International Journal for Parasitology: Drugs and Drug Resistance","volume":"25 ","pages":"Article 100544"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211320724000253/pdfft?md5=1758646700d4ce7a5e7b5857d8207d26&pid=1-s2.0-S2211320724000253-main.pdf","citationCount":"0","resultStr":"{\"title\":\"In vitro and in vivo activities of a trithiolato-diRuthenium complex conjugated with sulfadoxine against the apicomplexan parasite Toxoplasma gondii\",\"authors\":\"Ghalia Boubaker ,&nbsp;Alice Bernal ,&nbsp;Anitha Vigneswaran ,&nbsp;Dennis Imhof ,&nbsp;Maria Cristina Ferreira de Sousa ,&nbsp;Kai Pascal Alexander Hänggeli ,&nbsp;Noé Haudenschild ,&nbsp;Julien Furrer ,&nbsp;Emilia Păunescu ,&nbsp;Oksana Desiatkina ,&nbsp;Andrew Hemphill\",\"doi\":\"10.1016/j.ijpddr.2024.100544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Organometallic compounds, including Ruthenium complexes, have been widely developed as anti-cancer chemotherapeutics, but have also attracted much interest as potential anti-parasitic drugs. Recently hybrid drugs composed of organometallic Ruthenium moieties that were complexed to different antimicrobial agents were synthesized. One of these compounds, a trithiolato-diRuthenium complex (RU) conjugated to sulfadoxine (SDX), inhibited proliferation of <em>Toxoplasma gondii</em> tachyzoites grown in human foreskin fibroblast (HFF) monolayers with an IC<sub>50</sub> &lt; 150 nM, while SDX and the non-modified RU complex applied either individually or as an equimolar mixture were much less potent. In addition, conjugation of SDX to RU lead to decreased HFF cytotoxicity. RU-SDX did not impair the <em>in vitro</em> proliferation of murine splenocytes at concentrations ranging from 0.1 to 0.5 μM but had an impact at 2 μM, and induced zebrafish embryotoxicity at 20 μM, but not at 2 or 0.2 μM. RU-SDX acted parasitostatic but not parasiticidal, and induced transient ultrastructural changes in the mitochondrial matrix of tachyzoites early during treatment. While other compounds that target the mitochondrion such as the uncouplers FCCP and CCCP and another trithiolato-Ruthenium complex conjugated to adenine affected the mitochondrial membrane potential, no such effect was detected for RU-SDX. Evaluation of the <em>in vivo</em> efficacy of RU-SDX in a murine <em>T. gondii</em> oocyst infection model comprised of non-pregnant outbred CD1 mice showed no effects on the cerebral parasite burden, but reduced parasite load in the eyes and in heart tissue.</p></div>\",\"PeriodicalId\":13775,\"journal\":{\"name\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"volume\":\"25 \",\"pages\":\"Article 100544\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211320724000253/pdfft?md5=1758646700d4ce7a5e7b5857d8207d26&pid=1-s2.0-S2211320724000253-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211320724000253\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology: Drugs and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211320724000253","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

包括钌复合物在内的有机金属化合物已被广泛开发为抗癌化疗药物,但作为潜在的抗寄生虫药物也引起了人们的极大兴趣。最近,人们合成了由与不同抗菌剂络合的有机金属钌分子组成的混合药物。其中一种化合物是与磺胺多辛(SDX)轭合的三硫醇二钌复合物(RU),它能抑制生长在人包皮成纤维细胞(HFF)单层中的弓形虫蝌蚪的增殖,其 IC50 值为 150 nM,而单独使用或等摩尔混合物使用 SDX 和未修饰的 RU 复合物的药效则要差得多。此外,SDX 与 RU 共轭会降低 HFF 的细胞毒性。浓度为 0.1 至 0.5 μM 的 RU-SDX 不影响小鼠脾细胞的体外增殖,但浓度为 2 μM 时会产生影响;浓度为 20 μM 时会诱发斑马鱼胚胎毒性,但浓度为 2 或 0.2 μM 时不会。RU-SDX 有抑制寄生虫生长的作用,但没有杀寄生虫的作用,而且在处理早期会诱导蝌蚪线粒体基质发生短暂的超微结构变化。其他针对线粒体的化合物,如解偶联剂 FCCP 和 CCCP 以及另一种与腺嘌呤结合的三硫醇-钌复合物会影响线粒体膜电位,而 RU-SDX 则没有发现这种影响。对 RU-SDX 在小鼠淋病卵囊感染模型中的体内疗效进行了评估,该模型由未怀孕的 CD1 杂交小鼠组成,评估结果显示,RU-SDX 对大脑寄生虫负荷没有影响,但减少了眼睛和心脏组织中的寄生虫负荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In vitro and in vivo activities of a trithiolato-diRuthenium complex conjugated with sulfadoxine against the apicomplexan parasite Toxoplasma gondii

Organometallic compounds, including Ruthenium complexes, have been widely developed as anti-cancer chemotherapeutics, but have also attracted much interest as potential anti-parasitic drugs. Recently hybrid drugs composed of organometallic Ruthenium moieties that were complexed to different antimicrobial agents were synthesized. One of these compounds, a trithiolato-diRuthenium complex (RU) conjugated to sulfadoxine (SDX), inhibited proliferation of Toxoplasma gondii tachyzoites grown in human foreskin fibroblast (HFF) monolayers with an IC50 < 150 nM, while SDX and the non-modified RU complex applied either individually or as an equimolar mixture were much less potent. In addition, conjugation of SDX to RU lead to decreased HFF cytotoxicity. RU-SDX did not impair the in vitro proliferation of murine splenocytes at concentrations ranging from 0.1 to 0.5 μM but had an impact at 2 μM, and induced zebrafish embryotoxicity at 20 μM, but not at 2 or 0.2 μM. RU-SDX acted parasitostatic but not parasiticidal, and induced transient ultrastructural changes in the mitochondrial matrix of tachyzoites early during treatment. While other compounds that target the mitochondrion such as the uncouplers FCCP and CCCP and another trithiolato-Ruthenium complex conjugated to adenine affected the mitochondrial membrane potential, no such effect was detected for RU-SDX. Evaluation of the in vivo efficacy of RU-SDX in a murine T. gondii oocyst infection model comprised of non-pregnant outbred CD1 mice showed no effects on the cerebral parasite burden, but reduced parasite load in the eyes and in heart tissue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
7.50%
发文量
31
审稿时长
48 days
期刊介绍: The International Journal for Parasitology – Drugs and Drug Resistance is one of a series of specialist, open access journals launched by the International Journal for Parasitology. It publishes the results of original research in the area of anti-parasite drug identification, development and evaluation, and parasite drug resistance. The journal also covers research into natural products as anti-parasitic agents, and bioactive parasite products. Studies can be aimed at unicellular or multicellular parasites of human or veterinary importance.
期刊最新文献
Deep-amplicon sequencing of the complete beta-tubulin gene in Trichuris trichiura before and after albendazole treatment Rapid detection of mutations in the suspected piperaquine resistance gene E415G-exo in Plasmodium falciparum exonuclease via AS‒PCR and RAA with CRISPR/Cas12a Profile of molecular markers of Sulfadoxine-Pyrimethamine-resistant Plasmodium falciparum in individuals living in southern area of Brazzaville, Republic of Congo Yeast-based assay to identify inhibitors of the malaria parasite sodium phosphate uptake transporter as potential novel antimalarial drugs Comparative proteomic analysis of metronidazole-sensitive and resistant Trichomonas vaginalis suggests a novel mode of metronidazole action and resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1